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Abstract 

Nonlinear quasigeostrophic flows in two layers over a topographic slope are 
considered. Scaling the lower layer potential vorticity equation yields two pa- 

rameters which indicate the degree of nonlinearity in the lower layer. The first, 
ß^f-2 (the strength of the deep flow divided by the product of the effective bottom 
slope and the squared length scale), is related to the advection of relative vortic- 
ity, and the second, ^p- (the product of the inverse square deformation radius 

of the lower layer and the strength of the surface flow divided by the effective 
slope), to the advection of vorticity due to interfacial stretching. 

Two types of isolated vortex are used to examine the parameter dependence. 
An initially barotropic vortex remains barotropic only when j^- >> 1; otherwise 
topographic waves are favored at depth, and the vortex separates into a surface 
vortex and waves. In the latter case, the surface vortex is weakened, consistent 
with a simple linear theory. An initially surface-trapped vortex which is larger 
than deformation scale is baroclinically unstable when &&• > 1. If ^^ < 1, 

radiation of disturbances hinders or even blocks unstable growth, permitting the 
existence of large, stable surface vortices. 

Both parameters are also relevant to cascading geostrophic turbulence over 
a slope. If ^^ > 1, a "barotropic cascade" occurs at the deformation radius 

(Rhines, 1977) and the cascade is arrested at the scale at which j^jh- = 0\1\. 
The resulting flow is dominated by large scale, anisotropic topographic waves. If 
-^-L < 1, layer coupling is hindered and the cascade is arrested at the deformation 
scale. The flow then is dominated by isotropic surface vortices which continually 
"leak" energy to topographic waves at a rate proportional to A. 

In both single vortex and turbulence cases, the distinction between vortices 
and waves is more transparent when viewing potential vorticity. It is more dif- 
ficult to identify waves and vortices from the streamfunction fields, because the 
waves are present in both layers. 
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Chapter 1 

Introduction 

The variation of the Coriolis parameter with latitude, the so-called /3-effect, has 

a profound effect on oceanic flows. In particular, the variation produces a restor- 

ing force which opposes meridional motion and therefore supports Rossby waves. 

These waves are dispersive, and the phase speed is always westward. This west- 

ward orientation has been linked to the western intensification of the wind-forced 

currents in the ocean, i.e. the reason the Gulf Stream lies off the eastern coast 

of North America rather than the western coast of Europe. It is also known that 

larger scale motion "feels" the /3-effect more than does small scale motion, a fact 

which makes the larger scales more wave-like but permits nonlinearity at smaller 

scales (Rhines, 1975). 

In a barotropic fluid, topography acts in an analogous manner, i.e. it yields a 

restoring force which opposes cross-isobath motion. However, the orientation of 

this "topographic /3-effect" can change, so that the "westward" propagation of 

the waves relative to the topography could in fact be in any direction. Secondly, 

the strength of the topography can vary, and in many cases can greatly exceed 

the planetary ß. A stronger ß favors linear motion at smaller and smaller scales, 

leading to an expectation of predominantly wave-like motion over steep slopes. 

With the introduction of stratification, the problem changes considerably. In 



particular, stratification can "shield" flow at the surface from the effects of the 

topography, perhaps negating its influence. Put another way, if a flow does not 

advect fluid across the topography, it cannot generate waves and therefore does 

not interact with the topography. This suggests that a steep slope no longer 

necessitates wave-like flow, because flow at the surface may be nonlinear. Unlike 

the planetary /3-effect, the effect of topography in a stratified fluid varies in the 

vertical. This vertical asymmetry of the topographic ß can yield interesting 

results. 

As an example, consider a system in which the stratification is approximated 

by two immiscible layers. In the planetary ß case, a meridional restoring force 

exists in both layers. One says that such motion induces changes in perturbation 

potential vorticity (PV) in both layers. Two types of Rossby wave are supported: 

one with parallel particle meridional displacements in each layer (the barotropic 

mode), and another with anti-parallel motion (the baroclinic mode). Any initial 

disturbance can be broken into these two types of waves. 

In contrast, and as noted above, only motion across the slope in the lower 

layer is opposed by the topographic ß (if one assumes the planetary gradient is 

zero); motion in any direction at the surface is unopposed, i.e. causes no change 

in PV. A result is that topographic waves have only one propagating mode. This 

mode actually has particle displacements in each layer which are parallel, but the 

amplitude of the surface displacements is always smaller than at depth, and more 

so for small-scale waves (which are bottom-trapped) (Rhines, 1970). An initial 

value problem on the topographic ß plane thus has a very different outcome: a 

portion of the disturbance propagates away, but a portion may be left behind. 

This fact has profound effects in what follows. 

A similar comparison is between a two-layer system in which Ekman damping 

acts in both layers and another in which it only acts at the bottom. In particular, 

consider the effects on a (baroclinically) unstable flow. In the symmetric damping 
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case, damping inhibits the growth of disturbances, i.e. it stabilizes the flow 

(Pedlosky, 1987). In the asymmetric case the dissipation actually destabilizes the 

flow, so that the small disturbances grow before eventually decaying, leaving the 

original flow altered (Pedlosky, 1983). Anticipating the latter result given only 

the outcome of the symmetrically damped case would be difficult. 

There are numerous examples of strong surface flows adjacent to or over 

strong topography in the ocean. Rings which pinch off from the Gulf stream 

are known to migrate back towards the continental slope, and cross severe to- 

pographic features (Joyce, 1983; Cheney and Richardson, 1976). Likewise, the 

large Agulhas Eddies which migrate across the South Atlantic must pass over 

severe ridges, and are occasionally blocked there (van Ballegooyen et al., 1994). 

The California Current is an intense Eastern boundary current which lies adja- 

cent to the continental slope and spawns eddies which may even move on to the 

shelf nearby (Largier et al., 1993). With the large number of unstable boundary 

currents in the ocean, interactions between intense eddies and strong topography 

are expected to be common. 

The present work seeks to characterize the evolution of such eddies in the 

presence of stratification and bottom topography. In addition, I examine how 

flows which are familiar on the /3-plane are altered on the topographic /?-plane. 

Two specific cases are considered: a single vortex and a turbulent flow (multiple 

vortices). As explained below, there are numerous studies of both flows with the 

planetary ß, but much less is known about how they evolve over topography. 

The specific questions addressed are: 1) under what conditions do the sym- 

metric and asymmetric ß cases agree? 2) in cases in which they don't agree, how 

does one characterize the evolution and, in particular, the baroclinicity of the 

resulting flow? The more specific questions focus on whether an eddy can move 

across topography, perhaps from offshore into shallower water, or how cascading 

turbulence "arrests" over a slope. 
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1.1     Previous work 

The single vortex over a slope has been studied previously primarily as a model 

for large oceanic rings. However, the barotropic case with ß has been even more 

widely examined as a model for self-induced hurricane motion. A linear vortex 

of either sign drifts westward (Flierl 1977) and disperses rapidly, suggesting that 

meridional motion and the observed longevity of rings (of order several years, e.g. 

Cheney and Richardson, 1976) are likely the results of nonlinearity. McWilliams 

and Flierl (1979) found that a strongly nonlinear vortex decayed at a slower 

rate, and found a meridional component of translation velocity. The latter was 

first postulated by Rossby (1948) who noted that a vortex causes a deflection 

of the mean PV field and thus will tend to migrate meridionally to reduce this 

deflection. Adem (1956) showed by means of a Taylor expansion in time that a 

cyclonic vortex drifts initially to the northwest. 

Subsequent work (e.g. Chan and Williams, 1987; Fiorini and Elsberry, 1991; 

Resnik and Dewar, 1995) has sought to explain the self-induced motion in the 

strongly nonlinear limit, and to predict the initial velocity. The mechanism (now 

widely accepted) is related to the development of asymmetries in the vortex 

shape; as fluid on the sides of the vortex is advected meridionally, it acquires 

relative vorticity. A negative vorticity anomaly develops to the east of a cyclone, 

and a symmetric positive anomaly to its west, making the positive vortex appear 

stretched to the west and compressed to the east. The (dipolar) anomaly field 

can advect the primary vortex and the whole system will translate; by the signs of 

the anomalies, one deduces that a cyclone moves northward, and an anti-cyclone 

southward. Rossby waves are generally found in the wake, indicating decay and 

dispersal of the eddy. 

Warren (1967) was apparently the first to note that similar self-induced mo- 

tion could occur over topography. In agreement with this, Carnevale et al. (1991) 
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found that a cyclonic vortex moves to the local "northwest", or towards shallower 

water and to the left (facing shallower water), over a variety of sloping bottoms 

in the laboratory. Others have then sought to understand the specific influence 

of the continental slope on barotropic rings. Wang (1992) considered such a case 

with a hierarchy of models, and Grimshaw et al. (1994) approached the problem 

with the shallow water equations. 

Others have considered stratified vortices on a /3-plane, often with either an 

infinitely deep lower layer or a flat bottom, e.g. McWilliams and Flierl (1979), 

Mied and Lindemann (1979) and McWilliams and Gent (1986). All find a north- 

westward/southwestward drift for cyclones/anti-cyclones. However, the addition 

of baroclinicity can alter the dynamics. The elimination of the barotropic mode 

(in the deep lower layer or the one and a half layer case) appears to significantly 

reduce the speed of translation. In the flat bottom case, the vortex may evolve 

to a baroclinic dipole (e.g. Flierl et al., 1980) with an eastward velocity, though 

this typically occurred with an initial vortex with no barotropic component. For 

the more general initial vortex with some barotropic flow, the evolution closely 

resembled that of the one layer experiments. 

Previous baroclinic eddy studies over topography fall into two categories. In 

the first, the eddy is bottom-trapped on a slope beneath an infinitely deep upper 

layer, often as a blob of dense fluid. The theoretical studies of Nof (1983) and 

Killworth (1984) are examples, as are the laboratory studies of Mory et al. (1987) 

and Whitehead et al. (1990). Nof (1983) argued that the (cyclonic) vortex 

would drift westward under the influence of gravity and predicted a velocity 

consistent with that observed in Whitehead et al. (1990). Interestingly, Mory 

et al. (1987) found a northwestward drift with their cyclonic vortex, much more 

like the Carnevale et al. (1991) vortex (see Chapter 3 for more discussion of the 

discrepancy.) 

In the second category, the eddy is usually surface-intensified.   Smith and 
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O'Brien (1983), following on initial numerical work by Haustein (1981), studied 

a two-layer ring impacting a strong linear slope using a primitive equation model. 

They suggested that the effects of the planetary and topographic ß effects would 

be additive (as one might expect in a barotropic fluid). They found that a vortex 

with zero initial deep flow was not affected by the slope. In a similar vein, 

Kamenkovich et al. (1995), in a two layer, primitive equation study, noted the 

degree of interaction between a steep ridge and an Agulhas eddy depended on 

how barotropic the vortex was, but that the vortex became "compensated" (zero 

deep flow) after hitting the ridge. Strongly barotropic vortices could stall over 

the ridge, as they are sometimes observed to do in the South Atlantic. 

In relation to the continental shelf, the important question is whether offshore 

eddies can influence currents over the continental slope and shelf. Washburn et al. 

(1993) examined an anticyclone that essentially hovered over the Northern Cal- 

ifornia shelf for two months, transporting suspended sediment offshore. Largier 

et al. (1993) found that a significant portion of the current variability there was 

due to offshore eddies. In terms of modelling, Chapman and Brink (1987) found 

in the linear case that offshore forcing of shelf currents was greatest when coastal 

trapped waves were excited. Qiu (1990) found that the addition of planetary ß 

allowed for surface wave motion which in turn could induce surface variability 

over the shelf. 

A closely related area of study has focussed on intense topographic waves over 

the Continental slope, e.g. the slope off the east coast of the U.S. (Thompson 

and Luyten, 1976). Hogg (1981), Welsh et al. (1991) and Pickart (1995) have 

found evidence linking the waves with Gulf Stream meanders. Louis and Smith 

(1982), Shaw and Divakar (1987) and others have suggested that the waves may 

be generated by rings impacting the slope. A detailed review is given in Smith 

(1983). 

Thus significant work has been done on single eddies over topography, both 
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in the linear and nonlinear limits. Fewer results exist for more complicated 

nonlinear flows over topography. However, there is a large body of literature on 

two dimensional or "geostrophic" turbulence, both with and without a ß effect. 

In contrast to three dimensional turbulence in which energy is transferred to 

small scales where it is dissipated by viscous processes, energy in two-dimensions 

is transferred to large scales. The possibility of such an inverse cascade of energy 

was apparently first postulated by Onsager (1949) and Fjortoft (1953). Simul- 

taneous with the energy cascade is a forward cascade (towards small scales) of 

enstrophy (squared vorticity), which is also dissipated by viscous action. Spec- 

tral aspects of both cascades (in particular the details of the cascading inertial 

subranges for enstrophy and energy) were postulated by Kraichnan (1967, 1971) 

and Batchelor (1969). Recent work on the subject has focussed on the effects of 

intermittency, in the form of coherent vortices; Basdevant et al. (1981) showed 

that intermittency led to a steepening of spectra in the enstrophy inertial range, 

McWilliams (1984, 1990) demonstrated that coherent vortices dominate the dy- 

namics of freely evolving turbulence at later lates and Babiano et al. (1987) 

illustrated the importance of vortices in forced-dissipative turbulence. 

Related research has focussed on how various imposed effects could alter the 

barotropic cascade. Rhines (1975) found that the /3-effect led to an arrest of the 

inverse cascade, at a scale at which Rossby wave processes dominate advective 

processes, as waves are much less efficient at transferring energy. His numerical 

simulations moreover suggested the formation of zonally-oriented jets. Holloway 

(1978) and Herring (1977) found that small-scale bottom bumps could cause a 

flux of energy toward the scale of the topography, via nonlinear (triad) inter- 

actions. They also found a stationary, topographically-locked component of the 

flow, predicted as a state of "minimum enstrophy" (Bretherton and Haidvogel, 

1976) or maximum entropy (Holloway, 1978). Shepherd (1987) found that the 

presence of a large scale zonal jet (as in the atmosphere) affected the arrest of 
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energy both by altering the effective ß and by direct shearing of the vorticity 

field by the jet. 

The other significant complication which has been explored is stratification. 

Charney (1971) showed that under the quasigeostrophic approximation and the 

assumption of homogeneity, the conservation of potential vorticity guaranteed 

an inverse cascade to larger horizontal and vertical scales.   He also suggested 

that enstrophy in such a case be replaced by potential enstrophy, or squared 

potential vorticity, but that otherwise the 2-D formalism carried over.   Rhines 

(1977) suggested, along similar lines, that small-scale baroclinic energy in a two- 

layer flow would undergo a "barotropic cascade" upon reaching the deformation 

radius.   Thereafter, the cascade to larger scales was essentially as in the one 

layer case.  Noting that wind forcing of the ocean is generally baroclinic and at 

large scales, Salmon (1980) showed that the initial baroclinic cascade of energy 

was actually forward, but that the late evolution corresponded to that of Rhines 

(1977). From the vortex point of view, McWilliams (1990b) has suggested that 

the barotropic cascade occurs as coherent vortices at different depths align (e.g. 

Polvani, 1994) to make barotropic vortices. 

The problem of stratified turbulence over topography can be seen as a com- 

bination of two lines of study, i.e. stratified turbulence and topographic effects. 

Consistent with this, most previous work on the subject has focussed on the effect 

of bumps on stratified flows, either in layered systems or continuously stratified 

representations with truncated vertical modes. Rhines (1977) found that bottom 

bumps inhibited the barotropic cascade of baroclinic energy; however, he also 

found that the degree of barotropy depended on the initial vertical structure of 

the flow. Treguier and Hua (1987) found barotropy was achieved when the tur- 

bulence was forced at the surface, but that the bumps yield smaller horizontal 

scales than would be found over a flat bottom. Treguier and McWilliams (1990) 

also observed barotropic small scales, and suggested a link to the stationary topo- 
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graphic mode discussed by Herring (1977). Vallis and Maltrud (1994) considered 

other types of topography, and found jet formation to occur over a ridge, as well 

as the development of a temporal mean "westward" component of the flow. The 

latter they linked to the stationary topographic mode, and the former to the jets 

observed on the /3-plane by Rhines (1975). 

1.2    Thesis approach 

The examples considered hereafter are quite similar to the stratified topographic 

cases above: I examine a two-layer single vortex over a slope, as did Smith and 

O'Brien (1983) and Kamenkovich et al. (1995), and two-layer turbulence over 

a slope like Vallis and Maltrud (1994). But while the examples are similar, 

the approach is somewhat different. In particular, I restrict attention to the /- 

plane over a slope so that the only waves present are topographic waves. This 

permits a clearer picture of evolution by allowing for a separation into waves and 

"vortices", in most cases, and also aids the comparison to the purely barotropic 

case. Moreover, I will employ a quasigeostrophic model, rather than the primitive 

equations. 

The specific approach is to examine numerical initial-value problems in two- 

layer flows, with an idealized slope (a linear gradient). Under quasigeostrophy 

the flow is assumed to be geostrophic at lowest order (Pedlosky, 1987); specific 

restrictions are discussed in the model section, Chapter 2. Quasigeostrophy is 

adopted essentially for practical reasons: the simplified calculations permit a 

more thorough examination of parameter space than would a primitive equa- 

tion study. The two-layer approximation similarly shortens computations, but 

also the simpler vertical structure is easier to interpret. One nevertheless finds 

considerable complexity, even with this simplified system. 

In addition to the general object of characterizing the differences obtained by 
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introducing baroclincity to the problem, there are also several additional specific 

goals. As the single vortex case has relevance to the motion of oceanic rings, the 

self-induced translation of the vortex over the slope with varying stratification 

and slope is quantified. The baroclinic stability of the vortex is also of great 

importance, for ocean rings and for interpreting the results of the more general, 

turbulent case. In the latter case, the arrest of the inverse cascade is sought 

under varying stratification and steepness of the slope. 

The equations and model used for the numerical runs are described in Chap- 

ter 2. Scalings of the two-layer equations are discussed, as are particulars about 

the numerical implementation. Chapter 3 reviews the case of an isolated single 

vortex on the /5-plane, then discusses the fate of an initially barotropic vortex 

and a surface vortex over the slope. An appendix (A) is included which discuss 

the related case of a non-isolated vortex. In Chapter 4, turbulence over a slope 

discussed, with comparisons to the better known two-layer case with a flat bot- 

tom, as well as to the case with an infinitely deep lower layer. An appendix (B) 

follows which presents results from a another asymmetric case, one with only 

a bottom Ekman layer (no bottom slope). Chapter 5 concludes the work, and 

discusses the results in light of previous findings, as well as highlights specific 

shortcomings. 
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Chapter 2 

Model 

The equations which were used are presented below and several nondimensional 

parameters are found by scaling these equations. The spectral model used for the 

calculations is also explained, with some discussion of resolution issues and of the 

damping ("sponging") of waves. Unlike many contemporary numerical studies, 

a numerical filter is used rather than so-called "hyperviscosity", and the benefits 

(and drawbacks) of the filter are discussed in the final section. 

2.1     Equations 

The model is one of the simplest which incorporates advection, stratification and 

topography: a two-layer, quasigeostrophic model with a linearly sloping bottom. 

The quasigeostrophic (QG) limit implies a small Rossby number, small interface 

displacements and weak topographic slopes (Pedlosky, 1987) and thus is not 

strictly valid for oceanic regions with fronts and/or large bottom slopes. This 

will be discussed more below. 

The relative simplicity of quasigeostrophy makes analytical solutions more 

tractable, and permits higher horizontal resolution in numerical experiments, 

compared to comparable primitive equation models. Higher resolution allows for 
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a reduction of lateral damping effects and is thus desirable in simulations of invis- 

cid fluids. An additional numerical benefit of QG is that the vorticity equations 

are advanced in time rather than the momentum equations. This in turn allows 

the inclusion of a mean PV gradient, such as due to the ß effect or a slope, in 

a periodic domain, i.e. one without lateral boundaries and boundary layers. In 

the case of homogeneous turbulence, this is a considerable simplification. 

The inviscid, dimensional equations for the layer potential vorticities in the 

case of topography which only varies in the y direction are (e.g. Pedlosky 1987): 

?i + J(^i,?i) = 0 (2.1) 
dt 

g-tq2 + J(1>2, 92) + ßi-Q^2 = 0 (2.2) 

with qi = vVt + jPi(V»3-t — if>i) the "perturbation potential vorticity" and tpi 

the streamfunction for layers i=l,2 with y2 the horizontal (two dimensional) 

Laplacian operator. The (squared) inverse of the deformation radius in each 

layer is Fi — ^- with g' = B2^g the reduced gravity (pi is the density in 

layer i, p0 a reference density, and g the acceleration due to gravity), / the 

Coriolis parameter, and Hi the depth of the layer. The Jacobian is defined as 

J(a,b) = (gfg^ — ä^g^)- Here q\ is conserved on fluid parcels, but q2 is not, 

but changes as the parcels move across isobaths. Rather the "total potential 

vorticity" in layer two (q2 + /32 y) is conserved on parcels. 

One can define F2 = 8FX where 5 = j^ is the ratio of layer depths. In the 

ocean, 8 might be the ratio of the depth of water above the thermocline to that 

below, and, if so, has a typical value of about 0.2. The ratio is generally assumed 
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to be unity in the numerical runs for simplicity, but I will retain unequal layer 

depths in the expressions discussed hereafter for generality. 

The slope is taken to be linear and shallowing in y, so that ß2 = —f^H2'. 

Note that on the f-plane, there is no loss of generality in orienting the slope in 

this direction. The expression for ß2 can be found in a manner analagous to the 

one layer case, where the full PV is given by: 

«=-2-^ (2.3) 

where e = j^ is the Rossby number, assumed small. If h = h — |^y and f^f = 

0\e\ (L being the horizontal scale of motion), the PV can be rewritten: 

1 f- 
q*-(eS72i> + f-J-f-y). (2.4) 

The definition of ß2 given above then follows. Note that the expansion is carried 

out in the lower layer in the two layer case, so that h is replaced by H2. The 

PV gradient in layer two resembles the traditional /3-effect and so is called the 

"topographic ßn (Faller and VonArx, 1955). The small slope requirement is that 

the variation in depth is no greater than ^; assuming a Rossby number of order 

.1, a lower layer depth of 1 km and a scale of motion of 10 km yields a maximum 

grade of about 1%, a not unreasonably small number. However, QG is often 

avoided precisely for this limitation. Results presented later on will show that 

the effects of the slope can be large, even within QG. 

In previous studies, both planetary and topographic gradients were included 

(Smith and O'Brien, 1983; Kamenkovich et al.,1995). Wang (1992) contrasted 

results obtained on the barotropic f-plane with those found on the /3-plane with 
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topography. The planetary ß is nevertheless neglected here because its inclusion 

obscures the interaction with the topography. Expected modifications due to the 

planetary /3-effect are discussed in Chapter 5. 

2.2     Scalings 

The equations are scaled assuming motion with velocity scales U\ and U2 and 

a length scale L, and time scales Ti and T2 (subscript denoting layer). In the 

upper layer, an advective time scale is appropriate since the surface PV at a 

given location can only change under the influence of advection. Thus in layer 

one, T\ a jj-. In the lower layer, cross-slope motion also leads to temporal changes 

in PV, so one may choose an advective time scale or a time scale proportional to 

the period of the bottom waves. Many of the cases of interest below have little 

or no bottom flow, so the second choice is more desirable, i.e. T2 a. -^. Hence 

there are possibly different time scales in each layer. The difference is due to 

the vertical asymmetry of the PV gradient, and will be found to have profound 

effects. 

Scaling the potential vorticities in each layer, one finds that the measure of 

the relative importance of stretching and relative vorticity is determined by: 

FXL
2  ,   F2L

2. (2.5) 

These terms are the squared ratio of the scale of motion to the internal radius of 

deformation in each layer. As mentioned, in most of the numerical examples the 

layer depths are equal, and so there is only one parameter.  In the flat-bottom 

case, the size of the parameters generally indicates the degree of layer coupling. 

Scaling the bottom PV equation, (2.2), yields two parameters: 
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u2 
ß2L

2 (2.6) 

and 

ß* ß2 

fUi 
g'(dyH2) • 

(2.7) 

The first parameter is the ratio of PV changes due to the advection of relative 

vorticity and waves. Equivalently, it compares the deep advective time scale to 

the topographic wave phase speed, or the ratio of particle to wave speeds. It is the 

slope analog of the barotropic parameter, -57? discussed by, among others, Rhines 

(1975). In the barotropic case, the size of the parameter indicates the relative 

importance of advection and waves to changes in the Eulerian PV. Alternately, it 

indicates how "strong" the planetary restoring force is for given particle velocities. 

Similarly, the slope parameter indicates the effective severity of the slope. Note 

that it depends not only on the slope but the size and strength of the motion, 

i.e. a larger/weaker vortex "sees" a larger slope than a smaller/stronger vortex. 

The second parameter is the ratio of PV changes due to the advection of 

thickness and waves. The ratio of the first parameter in (2.6) and that in (2.7) 

is W-pTrr, and is small when there are large scales of motion and/or when the 

deep flow is weak. The thickness parameter is found to be central to baroclinic 

instability, and thus important in both single and multiple vortex cases. 

If both advective parameters are small, the contours of total PV in the lower 

layer are "open" since they are dominated by the slope contribution. As seen in 

Chapters 3, the degree of openness of the PV contours in the barotropic, /3-plane 

case indicates how linear the evolution is. Likewise, when the contours are open 

in the two-layer case, one finds the deep evolution to be more wavelike, and the 

surface flow to be more baroclinically stable. 
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2.3     Numerical method 

The PV equations in (2.1-2.2) were stepped forward in time with a Fortran code 

written by Glenn Flierl. Equations (2.1-2.2)were solved spectrally on a doubly- 

periodic domain (e.g. Canuto et al., 1988), so that all variables are Fourier 

decomposed in both directions: 

(&> •"») = TTTT J2 Z)(«. ui) exp(ikx + ily) (2.8) 

where Nx and Ny are the number of grid points (real space). As such, the 

model has no boundaries, so the region of ocean represented is far from coasts. 

Moreover, the double periodicity implies that energy which exits one side of the 

domain enters the opposite side, so waves generated in the domain can re-enter 

and interact with the original flow. This aspect is perhaps the largest drawback of 

the model, and is discussed below. The length scale is chosen so that the domain 

dimensions are 27T by 27r, a common choice which results in integral wavenumbers 

in spectral space. Variables are alternately referred to by their Fourier and real 

representations, so the hat distinguishes the Fourier transform (as in (2.8)). 

The single vortex runs required fewer grid points than the turbulence runs, as 

the latter often had of order one hundred vortices. In most cases with the single 

vortex, using 642 and 1282 grid points (with maximum wavenumbers 32 and 64) 

yielded quantitatively similar and qualitatively identical results. The model runs 

were rapid with 642, so that resolution was used most often. In one region of 

parameter space however, the vortex broke up into smaller vortices, and 1282 

points were required. Of course, the required resolution depends on the choice of 

initial conditions because a smaller initial vortex requires more grid points. But 
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the vortex used here filled a large portion of the domain, so that there were of 

order 20 grid points across the diameter of the vortex with 642 points. 

The turbulence cases on the other hand required greater resolution. The 

amount required depended on the initial conditions, but it was desirable to have 

initial flow with relatively small scales (to yield a larger population of vortices— 

see for example Santangelo et al., 1989) so more grid points were required. There- 

fore, the primary runs were made with 2562 grid points. Though this is modest 

resolution in comparison to recent barotropic calculations (10242 in Santangelo 

et al., 1989), higher resolution was not feasible given the computer resources 

available, and the fact that fast waves required a small time step. Many addi- 

tional runs were made with 1282 points and the qualitative aspects were generally 

reproduced. Additional details on resolution are presented in Chapter 4. 

The model was advanced in time with a standard leap-frog scheme, with 

an Euler step applied periodically to stabilize the computational mode (e.g. 

McWilliams, 1990). More sophisticated routines might be required for more 

quantitative representations of observed flows, but this technique was judged 

sufficient for the results sought here. 

Spectral dealiasing, a technique which removes contributions to the Jacobian 

from unresolved wavenumbers (Patterson and Orszag, 1971), was also employed. 

However, the results were nearly identical with and without dealiasing, so long as 

the resolution was fine enough. The single vortex runs were negligibly altered by 

de-aliassing (differences in the calculated position of the center of the vortex for 

a typical set of parameters were in the fourth decimal place), but turbulence runs 

with 1282 grid points benefited somewhat (dissipation was decreased by a few 

percent). The higher resolution turbulence runs were not significantly improved. 

As dealiassing lengthened the computational time by roughly 50%, it was not 

used. 
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2.4     Sponge 

As mentioned, a drawback of double periodicity is that waves may exit one side of 

the domain and re-enter the other side, leading to multiple interactions with the 

primary flows (vortices). Often the interaction was weak enough to ignore, but 

in some cases the primary flow was severely distorted by the waves. In the single 

vortex cases, the problem was remedied with a "sponge" layer, of the following 

form: 

sponge = .5 + .25 * (tanh((x - .3)/10) + tanh((27r - x + .3)/10)) (2.9) 

This function, which is basically unity over most of the domain but decays to 

.5 in a boundary layer of half-width .3 at the left and right edges of the domain, 

multiplied the perturbation potential vorticity in the lower layer (for reasons 

discussed below) at each time step. The sponge only decays to .5 because the 

vortex was found to excite domain-scale normal modes with more severe filters. 

The sponge was more successful with smaller scale waves, which had a strong 

signature in vorticity, than with larger scale waves. In most cases, the sponge 

sufficiently weakened the re-entrant waves, but in one case more drastic measures 

were required, as discussed in Chapter 3. 

A sponge was not used with the turbulence runs. By removing vorticity at the 

edges of the domain, the sponge catalyzed the rapid formation of zonal jets, i.e. 

structures with no zonal gradient of vorticity. As mentioned in Chapter 4, using 

a bottom Ekman layer is one way to damp the waves, but the Ekman layer itself 

changes the stability properties of the surface flow (Pedlosky, 1983). Therefore, 

the base runs were made with no Ekman damping.   However, additional runs 
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were made in which layer decoupling was accomplished solely by a bottom Ekman 

layer, for comparison. The details are given in Appendix B. 

2.5    Damping 

When the inviscid potential vorticity equations (2.1-2.2) are advanced in time, 

numerical instability often results as energy accumulates at the smallest scales. 

This is usually avoided by including a diffusion term on the right hand side of the 

equations, as a model for unresolved small scale dissipative processes. Common 

forms are a Laplacian diffusion, v2\J2qi, or a "bi-harmonic" diffusion, u4S/4qi (e.g. 

McWilliams 1984), although higher order schemes are often used. Generally Vj is 

adjusted to minimize viscous damping of the flow and, with sufficient numerical 

resolution, the effects on the larger scale dynamics usually are generally small. 

However, there are negative aspects. Diffusion causes decay, albeit slow, of energy 

at even the largest scales. It also acts to smooth sharp gradients in vorticity, 

such as those that appear under the action of strong straining. The effects are 

sometimes undesirable, as discussed below. 

An alternate means of achieving numerical stability is by the use of a low- 

pass wavenumber cut-off filter, widely used in spectral simulations of compressible 

flow (see Canuto et al., 1988) wherein the streamfunction is periodically multi- 

plied by a specified function. A low-pass filter generally tends to unity at small 

wavenumbers and zero at large wavenumbers, and the transition at intermediate 

wavenumbers, as well as the frequency of application, determine the strength of 

the filter. A broader filter smooths and weakens discontinuities, whereas filters 

which only remove the very smallest scales may suffer Gibbs-like oscillations in 

the vicinity of a discontinuity in the flow, such as a strong front or shock. Dif- 

ferent filters are desirable for different flows, and in the absence of analytical 

solutions, a filter is generally chosen by trial and error. 
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The effect of filtering is similar to that of the diffusion operators; both lead 

to a reduction of energy at small scales. In fact, the action of the commonly used 

"raised cosine" filter is formally equivalent to Laplacian damping when converted 

to finite differencing (Canuto et al., 1988). Filters which are less invasive at lower 

wavenumbers are analagous to higher-order diffusion schemes. The advantage of 

the filter is that the there will be a range of wavenumbers, chosen a priori, which 

will be formally undamped. This can lead to qualitative improvements in the 

numerical representation at a given resolution. 

The filter employed here is the exponential cut-off filter: 

filtr(i,j) = < 
exp(-18.4((x2 + y|)* - erf)   if (4 + y*)\ > C+ 

1-0 if (*J+ #)»:<<* 

where (x^,,y^) = (k Ax, I Ay) with (k,l) the horizontal wavenumbers in spectral 

space and (Ax, Ay) the grid spacings. The exponent, 4, is chosen to yield a filter 

which decays over a wide enough range of wavenumbers and the factor of -18.4 

(ln(10-8)), is determined by the machine accuracy, which was single precision for 

these runs. The cut-off wavenumber, c^, is chosen so that the filter is zero to 

machine accuracy at the maximum wavenumber of the grid. Setting c^ = .65/cmax 

with 642/1282/2562 grid points results in damping of the wavenumbers above 

21/42/83, with those above 27/53/106 decreased by more than 50 percent (recall 

the maximum wavenumbers are 32/64/128). Wavenumbers below 21/42/83 are 

multiplied by one, and thus undamped. 

The principal difference between using a numerical filter and a low-order dif- 

fusion operator is a non-zero decay of the middle wavenumbers under diffusion. 

The effects of this selective decay can be illustrated as follows. A typical simula- 

tion with 1282 grid points and biharmonic diffusion (y4) requires uA = 2.3 X 10-6 
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for numerical stability. With this value, the e-folding time scale for wavenumber 

10 is roughly 29 time units. In figure (2.1), two Gaussian "vortex" profiles are 

shown with their corresponding profiles reconstructed from a Fourier series trun- 

cated at wavenumber 10. The upper profile has ( = 5.25 e~^öi' and the lower 

has ( = 21 e~(°Ab^ , where ( is the relative vorticity. The reconstructed profiles 

are indicated by dashed lines. 

The severe truncation has little impact on the broader vortex, but the nar- 

rower profile is altered by the loss of the higher wavenumbers. In particular, 

one finds that the truncation has 1) weakened the vorticity maximum and 2) 

introduced Gibbs oscillations on the wings of the vortex. In plan view, the latter 

would appear as rings of oppositely-signed vorticity around the vortex. 

The diffusive effects in an actual run may be less dramatic since different 

wavenumbers decay at different rates, nevertheless both the side lobes and the 

decrease in the maximum often appear in the calculations with hyperviscosity. An 

example is shown in figure (2.2) in which a barotropic dipolar vortex ("modon") 

is translating to the east from its initial position at the center of the domain. 

The individual vortices have a Gaussian profile identical to the lower profile in 

figure (2.1). The modon motion was calculated with three types of damping, the 

traditional Laplacian damping (v2 V2C)> hyperviscous damping (i/8 V8C) an(i with 

the numerical filter shown in (2.5). The viscosities used were representative of 

the values usually chosen to insure numerical stability in turbulence calculations, 

specifically v2 = 9.82 x 10-4 and v& = 1.37 X 10-11. At left are contours of 

vorticity at t = 0 and t = 15 for the respective cases, and at right are meridional 

profiles of the modons at the later time. All calculations used 1282 grid points. 

The position of the vortices is nearly identical in all three cases, suggesting 

that the gross dynamics are not affected by the choice of damping. However, the 

decay of the vortex amplitudes is evident in the hyperviscous case, and drastic in 

the Laplacian damping case.  In fact the amplitude has been decreased by 72% 
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Figure 2.1: A Gaussian profile (solid line) with the same profile reconstructed 
from a Fourier series truncated at wavenumber 10 (dashed line). The upper profile 
has ( = 5.25exp-(^)2 and the lower has ( = 21exp-(5^)2. A decrease in 
amplitude and Gibbs effects are evident in the lower case. 
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Figure 2.2: An eastward translating barotropic dipole under the influence of 
three types of damping: Laplacian damping (i/2 y

2 () with v2 = 9.82 X 10-4, 
hyperviscous damping (i/8 y

8 () with i/8 = 1.37 x 10-11, and with an exponential 
cut-off filter applied at each time step. At left are contours of vorticity at t = 
0 , 15, and at right are cross sections of vorticity at the later time. The vorticity 
contour levels (±[.25.512.5510]) were chosen to highlight the outer structure of 
the compact vortices. 
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in the Laplacian case, 28% in the hyperviscous case, and about 1% in the filtered 

case. Ideally, the latter decrease ought to be zero since the grave wavenumbers 

are undamped, but the vortex maxima are found to fluctuate, and to decrease 

somewhat. 

In addition, the hyperviscous run is found to develop weak external lobes or 

rings of oppositely signed vorticity. The contours at left were chosen to highlight 

this feature, but the lobes are also visible in the profile at right. The Laplacian 

run does not exhibit the ring formation; rather the diffusive decay simply flattens 

the profile and causes it to spread out laterally. The filtered vortices apparently 

do not develop the lobes at all, but rather retain their original shape. 

Mariotti et al. (1994) document similar effects due to hyperviscous damping 

in the case of a vortex in an external shear. As they note, changes in vortex 

amplitude can alter its longevity under shear, since the shear required to destroy 

a vortex is proportional to its maximum value of vorticity. They also document 

an increase in amplitude under hyperviscosity in some cases when the vortex 

was strongly deformed by the shear. I have found similar behavior with the 

wavenumber filter, and I believe the effect is inevitable with a truncated spectral 

representation. The effect is undesirable in a model which supposedly conserves 

potential vorticity, but the impact of a fluctuating peak amplitude was found to 

be less problematic than a rapid decay of the vortex. 

If the resolution were substantially greater, one could use smaller viscosities 

and the results would be more nearly the same. Likewise, if the vortex were 

larger, as in the upper panel of figure (2.1), the differences would be less. How- 

ever, the filter yields a more nearly "inviscid" response at a given resolution than 

does hyperviscous diffusion. 
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2.6     Vortex counting 

As mentioned, McWilliams (1984) found freely evolving turbulence is dominated 

by coherent vortices at later times. Using an automated vortex counting routine 

to locate and characterize the vorticity extrema, McWilliams (1990) discovered 

an apparent power law decay of the vortex population, with N a t~~ 5. This 

prompted Carnevale et al. (1991b) to propose a scaling theory which related mean 

vortex quantities (area, circulation, peak vorticity) to the number of vortices. 

Vortices likewise play an important role in the baroclinic turbulence experi- 

ments in Chapter 4, and vortex statistics are a useful way to quantify their evo- 

lution, as well as providing a point for comparison with the McWilliams (1990) 

results. The method used is very similar to that described in some detail in 

McWilliams (1990). The potential vorticity at each grid point is tested to see 

whether it is greater than the threshold value, qmin, then the qualifying grid 

points are grouped into simply connected regions. This was done by a repetitive 

process of checking neighboring points and labeling connected groups. Some care 

was required as the domain is doubly periodic, so single vortices could straddle 

borders. 

After the groups have been selected, those with less than five grid points 

are rejected as too small. Also, groups which were too elongated were rejected, 

basically to remove filaments from the population, via a rough axisymmetry test. 

The (x, y) aspect ratio was computed for each vortex, and vortices with a ratio 

less that 1/5 or greater than 5 were rejected. This procedure is more crude than 

that of McWilliams, but was preferable in this case due to vortex deformation 

by topographic waves. 

Areas were calculated by multiplying the grid area, Ax x Ay, by the number 

of vortex grid points. The circulation was found by multiplying the vorticity 

at each grid point by the grid area and summing over all points.   The peak 
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vorticity was simply the maximum vorticity in the vortex. Additional quantities 

(maximum area, integrated squared vorticity, etc.) are easily found, but not 

reported in the text. 

2.7     Quadratic Invariants and Spectral Fluxes 

The two-layer QG equations possess several quadratic invariants which are useful 

in evaluating nonlinear baroclinic flows. For the sake of unity, the invariants 

referred to in the text are presented here. The single layer case is shown first, for 

illustration as well as for reference to a case in Chapter 4. Then the two layer 

invariants are derived. 

The one layer PV equation in the absence of ß may be written: 

-q + Jty, v V) = 0 (2.10) 

where q = y2^ in the barotropic case, or q = (y2 - F)x/} in the case of a single 

layer of fluid overlying a motionless deep layer (the so-called one and a half 

layer case). Equation (2.10) is equivalent to equation (2.1) with ^2 set to zero. 

The energy equation is derived by multiplying the Fourier-transform of equation 

(2.10) by V>*, where the asterisk indicates complex conjugate and the hat accent 

denotes transform. Taking the real part of the result yields an equation for the 

total energy (which is real): 

g-t(KE(K) + PE{K)) = *{i?V(ik «V)} (2.11) 
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where KE = |/C
2
|T/>|

2
 is the kinetic energy, PE = ^^i|"0|2 the potential energy, 

3ft is the real part and K
2
 — k2 + I2 is the total (squared) wavenumber. The 

nonlinear term on the right hand side permits transfer of energy between different 

wavenumbers, but does not alter the total energy, i.e. 

^^#4^)} = 0 (2.12) 
k    i 

so that the sum over all wavenumbers of the sum of kinetic and potential energy 

is conserved, although of course there can be exchange of energy between the two 

components. Note that the nonlinear term derives solely from the advection of 

relative vorticity. In other words, there is no advection of thickness in the one 

and a half layer case, which is the same as saying there is no baroclinic instability 

(Pedlosky, 1987). The spectral transfer is mostly of interest in Chapter 4 since 

there is an active shift in scales due to turbulent interactions. In the case of the 

single vortex, the scales are essentially fixed so that the transfer is weak if not 

zero. 

The conservation of PV also implies conservation of qn where n is any number. 

A frequently used quantity is the squared potential vorticity or the "potential 

enstrophy" (Charney, 1971). An equation for this quantity is found by multiply- 

ing equation (2.10) by q* = — (/c2 + F\)ip* and then taking the real part of the 

resulting equation: 

§-tl\q\2 = -m*J(l^)}. (2-13) 

The transfer on the right also vanishes when summed over wavenumber, so that 

the total enstrophy is conserved.   Again note that changes in the quantity are 
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brought about solely by advection of relative vorticity. The addition of ß changes 

neither conservation equation, (e.g. Rhines, 1977); however, with the addition of 

a bottom slope, enstrophy is no longer conserved in the lower layer. 

The total energy for a two-layer flow is derived in a similar fashion. The 

Fourier-transformed upper layer equation (2.1) is multiplied by 8ißl/(l + 8) and 

the transformed lower equation (2.2) by ^/(l + $), the asterisk again indicating 

the complex conjugate. The real part of the sum of the resulting equations is: 

p< 

-TE(zc) = »{#./(&, K2
^)} + ^J^,«2^)} + nHlJiiiM)  (2.14) 

where TE — KE\ -f KE2 + PE. The spectral transfers written in this way will be 

referred to as the "layer-wise" transfers because the first two terms derive from 

advection of relative vorticity in each layer. Note the first is the same as the 

transfer for the one and a half layer energy. The presence of a thickness transfer 

indicates the possibility of baroclinic instability (e.g. Salmon, 1980) when there 

is a correlation between temperature (thickness) and the perturbation velocity 

field (Pedlosky 1987). The sum over all wavenumbers of the transfers is zero, so 

again the total energy is conserved. 

An alternate method, and one more commonly used with two layer models, 

is to break the total energy into barotropic and baroclinic parts (e.g. Salmon, 

1980). One first adds and subtracts equations (2.1-2.2) to obtain equations for 

the barotropic and baroclinic vorticity. With equal layer depths, the result is 

(using the notation of Larichev and Held (1995)): 

^ VV + W, VV) + J(r, V2r) + Ä^, - V2 ^ + JW, V V) + J(T, V2r) + foä-ty - T) = 0 (2.15) 

-(V2 + 2F)r + J(iP, v2r) + J(r, V V) + J(1>, ~2FT) - &£ty - r) = 0 (2.16) 
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where ip = \(ij)\ + ^2) is the barotropic streamfunction and T = \{ip\ — ^2) the 

baroclinic streamfunction. The energy equations follow after multiplying (2.15) 

by •0* and (2.16) by f*, and taking the real parts: 

-/c2|V>|2 = »tyVty, K2
-4>)} + K{^V(f, /c2f)} - /32£{iJty*f } (2.17) 

-(/c2+2F)|f |2 = »{f V(f, /c2^)}+3J{f * J(^, /c2f )}+£{f * J(^, -2Ff )}+/?2&{iity*f } 

(2.18) 

The first transfer term in the barotropic equation represents barotropic self- 

advective changes and the second is due to transfers to/from the baroclinic mode. 

One finds that the sum over wavenumbers of the first is zero, but may be non- 

zero for the second as there may be a net exchange of energy between baroclinic 

and barotropic modes. Likewise, the first transfer term of the baroclinic equa- 

tion is the baroclinic self-advective term and the second the transfer to/from the 

barotropic mode, the sum of the first over wavenumbers being zero, but not nec- 

essarily zero for the second. However, the sum of the second term is the negative 

of the sum of the second barotropic transfer term, as is required by conservation 

of total energy. The two intermode transfers are not equal at every wavenumber 

as energy may be removed and injected at different scales (a striking example is 

found in Larichev and Held (1995)). The third baroclinic transfer term represents 

changes to the spectrum due to the advection of thickness by the barotropic field, 

and can be shown to be identical to the thickness transfer term in the total en- 

ergy equation (2.14). The final terms in both equations represent wave-induced 

transfers of energy between the barotropic and baroclinic modes. They cancel 

wavenumber by wavenumber, i.e. they are equal and opposite in the two budgets. 
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The barotropic/baroclinic formalism tends to be more illustrative of baroclinic 

instability, evidenced in particular by a conversion of baroclinic to barotropic 

energy. However, it will be seen that in cases of severe layer decoupling, the 

layer-wise transfers are preferable. 

The equations for the two-layer potential enstrophies and transfers are found 

by multiplying equations (2.1-2.2) by g* and ql respectively, and taking the real 

parts: 

^lft|a = -*{$iV(&,ft)} (2-19) 

^\q2\2 = -»{#J(&,&)} -&»{**£*}. (2.20) 

Again, the sum over all wavenumbers of the first transfer term in each equation is 

zero, implying conservation of the surface enstrophy in the absence of small-scale 

dissipation. But the lower layer enstrophy is not conserved due to the slope term 

(which need not sum to zero). The breaking of the conservation of enstrophy by 

topography has been noted before (e.g. Rhines, 1977). When the bottom is flat 

and dissipation present, the enstrophy monotonically decays in both layers.1 

In forced-dissipative studies, the transfer terms are generally averaged over a 

long period because they tend to be noisy (e.g. Treguier and Hua, 1987; Larichev 

and Held, 1995). Averaging in time is less appealing for initial value problems 

because if the spectra are shifting in time, averaging tends to smear out the 

transfers. An alternative is to calculate the spectral fluxes, defined as : 

1The equations shown here are inviscid, and thus do not represent the dissipation due to 
the filter. This could be done by adding a higher-order diffusion term. Then it would be clear 
that one obtains a monotonic decay of enstrophy. 
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flux(n) = ^2 trans/er(/c). 
K=0 

(2.21) 

The flux represents the net amount of energy entering or leaving the inner volume 

of wavenumber space. By virtue of being an integral quantity, the flux is less 

noisy than the transfer.   It has the additional benefit of revealing immediately 

which terms have non-. zero total integrals over all wavenumbers (the ; barotropic- 

baroclinic transfers). The spectral flux is by definition an isotropic quantity 

(averaged over all directions) and thus must be viewed cautiously in anisotropic 

flows. However, like the quadratic quantities in general, they provide a useful 

means of extracting information from the sometimes complicated flow fields. 
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Chapter 3 

A single vortex over a slope 

As explained in Chapter 2, the scaling of the lower layer PV equation yields two 

advective parameters: ^y and ^p-. The size of these parameters determines 

the degree of openness of the contours of the total lower layer PV, and is related 

to the importance of nonlinearity at depth. Both parameters will be examined in 

turn below. The first is studied using an initially barotropic vortex, which has no 

interfacial deformation and thus zero (initial) advection of thickness. The second 

parameter is then considered by looking at the evolution of a surface-trapped 

vortex, in which the interfacial displacement may be large, but relative vorticity 

at depth is initially zero. 

The barotropic vortex case lends itself naturally to comparison with a single 

layer case. The barotropic case, from which much of our present intuition into the 

baroclinic problem derives (e.g. Smith and O'Brien, 1983), is therefore discussed 

first. Here, ^p- determines the degree of openness and linearity of the ensuing 

evolution. One finds that the vortex motion is an indicator of the nonlinearity, 

as has been discussed before. 

The primary difference in two layers is that the PV gradient is now non- 

uniform in the vertical. This asymmetry "favors" baroclinicity as one might 

expect. Particular questions which will be addressed are: 1) when is the evolution 
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barotropic? 2) if baroclinic, what is the ensuing motion? and, 3) how do the 

single layer results help in our understanding of the problem? Inherent in the 

third is the validity of using intuition from barotropic problems to diagnose the 

motion of baroclinic rings over topography. 

The barotropic results, and thus the importance of -^h, form the central 

portion of the chapter. However, the second parameter, ^p-, is also important 

and one finds that it is related to vortex stability because a large bottom slope 

works against layer coupling. Several examples are presented, and the general 

importance of the parameter deduced. 

3.1     Initial conditions 

The vortex used in both one and two-layer examples discussed hereafter has a 

Gaussian streamfunction profile, i.e. 

V> = Aexp{-{j-f) = -Q.7exp(-(^)2) (3.1) 

and is shown in figure 3.1. A Gaussian streamfunction vortex is a common 

choice in numerical studies (e.g. McWilliams and Flierl, 1979) as well as in 

laboratory studies (e.g. Carnevale et al. 1991a) because its azimuthal velocity 

decays exponentially in the far field, thereby minimizing interactions with the 

boundaries. Such a vortex is "isolated" because the vanishing of the azimuthal 

velocity implies zero circulation: 

lirrir^oo j j vV dA = /imr_00 j> v{r) r dO = 0 (3.2) 
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Figure 3.1: The initial vortex. The streamfunction is shown at top, with contour 
interval C.I. = ±[.1 : .1 : 1]; the vorticity is in the middle panel, with C.I. = 
±[1 : 1 : 10]; and the azimuthal velocity profile at bottom. The bold contours 
are negative values, the thin are positive. 
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so that a monopolar vortex is nested in a ring of oppositely-signed vorticity, as 

seen in the middle panel of figure 3.1. The Gaussian vortex is known to be 

weakly barotropically unstable, with the result that the outer ring rolls into two 

"satellite" vortices yielding a "tripolar" structure (Kloosterziel and van Heijst, 

1991). This was found in some cases discussed below, but generally did not alter 

the qualitative aspects of the evolution. 

Note r0 is the radius to the velocity maximum, chosen so that the vortex was 

well-resolved but did not extend too close to the boundaries of the domain. The 

length scale was chose so that the latter had dimensions 2TT by 27T. The amplitude 

was chosen so that the maximum azimuthal velocity was approximately 1.0. As 

stated above, the vortex is taken to be initially barotropic and so has the same 

velocity profile in each layer. 

In addition, only cyclonic vortices are considered. However, the quasigeostrophic 

equations are isomorphic under the change ip(y) —> —il>(—y), so the results for 

an anticyclone are exactly the same with the reversal of the effective "north" 

and "south", i.e.   if the cyclone moves toward shallower water, the equivalent 

anticyclone moves to deeper water. 

3.2     One layer results 

Scaling the barotropic quasigeostrophic vorticity equation with the wave period 

as a time scale (T a (ßL)'1) and the vortex radius (r0) as a length scale yields a 

single parameter: a
u i- The inverse of this parameter defines a non-dimensional 

effective slope. Both quantities will be used hereafter. However, when the di- 

mensional version of ß is required, it will be denoted ßdim- The size of ß is an 

approximate indication of linearity of the vortex evolution. Which radius to use 

in this expression is somewhat subjective; the convention adopted here is the 
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same as used in the observational literature (e.g.   Joyce and Kennelly, 1985), 

specifically the distance to the maximum azimuthal velocity, or r0. 

Four examples of single-layer vortices on the /3-plane are shown in figure 3.2 

for a large range of values of ß = ßd{™rQ; in particular, the relative vorticity is 

shown after the vortex has evolved from its initial position in the center of the 

domain. In the strong ß limit, shown in the lower right panel, the evolution is 

nearly linear and the vortex disperses rapidly as a packet of Rossby waves. The 

decay of the peak value of vorticity is correspondingly rapid. This approximates 

the case of a fully linear ring, considered in detail by Flierl (1977). The direction 

of "vortex" translation is exclusively westward, due to the north-south symmetry 

of the initial profile (see Flierl, 1977). 

The opposite extreme, in which advection dominates changes in the relative 

vorticity, is seen in the upper left panel. Note that this figure shows the vortic- 

ity at t — 36, as compared to the strong ß case at t = .18; as ß is 103 times 

smaller in this case, the wave phase speeds are correspondingly slower. However, 

there are qualitative differences from the linear case. For one, the vortex motion 

is predominantly meridional, with only a weak westward drift. The northward 

drift is due to an interaction with the perturbed background vorticity field, and 

is described below and briefly in Chapter 1. The strength of the cyclone has 

decreased only marginally during the evolution, due to the meridional displace- 

ment and the (weak) mean PV gradient. Note that the outer ring of vorticity has 

begun to roll up into two satellites, due to the barotropic instability described 

earlier. 

With intermediate values of ß the response falls between the two extremes 

described above. There is less meridional motion and more westward motion 

than in the weak ß case, and an increasing rate of decay of the original cyclone. 

There is also a more pronounced "wake" of Rossby waves at larger values of ß. 

In the ß = 0.18 case, the pools of vorticity resemble similar structures found 
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ß = .018 ß = 0.18 

ß= 1.8 ß= 18.0 

Figure 3.2: The vorticity at later times in the one layer runs. The corresponding 
times are t = 36 (ß = .018), t = 16 (ß = .18), t = 4.5 (ß = 1.8), t = .18 (ß = 18) 
and C.I. = ±[1:1: 10]. 
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by Carnevale et al., (1991a). The qualitative transition from nonlinear to linear 

behavior appears to occur around ß = 1 (consistent with the scaling), but it is a 

gradual transition. 

The relative vorticity is not conserved on the /3-plane, but rather the total 

vorticity, \J2ip + ßy, is. Plots of this quantity for the initial vortex in the four 

cases are shown in figure 3.3. Here the cyclonic vortex is seen as a downward 

deflection of the isocontours of barotropic potential vorticity, and the degree of 

the deflection depends on the relative strengths of the cylcone and the background 

gradient. The deflection is strong enough to yield closed contours of PV in three 

of the cases; indeed, it is so strong in the ß = 0.018 case that the background 

gradient is not visible with the contours drawn. The transition between closed 

and open contours, around ß = 1, reflects the degree of nonlinearity of the 

resulting evolution. The figure qualitatively suggests that northward motion will 

occur as the deflected contours relax towards their equilibrium positions (latitude 

lines), as noted by Rossby (1948). Indeed, the integral theorem of Flierl et al. 

(1983) states that such a monopolar vortex experiences an unbalanced "Rossby" 

force on the ß plane, indicating that the deflection must relax. McWilliams and 

Flierl (1979) noted this tendency, but found that a vortex with weak ß turned 

westward before reaching the "rest latitude". 

The vortex translation is thus due to a combination of wave dispersion which 

yields westward motion and a nonlinear mechanism which gives meridional mo- 

tion. In the weak ß case, the Rossby phase speeds are so slow that the meridional 

drift dominates, but when ß is large, the meridional drift is inconsequential. The 

nonlinear mechanism for meridional self-advection was discussed briefly in chap- 

ter 1, and hinges on the generation of a perturbed dipolar background field, the 

so-called "/3-gyres" (e.g. Sutyrin and Flierl, 1994), which in turn advect the pri- 

mary vortex. The gyres are initially oriented east-west, but acquire a tilt as the 

vortex begins to move so that the resulting path is more northwestward. 
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Figure 3.3: The total vorticity \J2tf) + ßy at t = 0 for the one-layer vortex. The 
contours are chosen so that 15 contours span the range [(min, (max] ■ 
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>*  0 

Figure 3.4: The asymmetric streamfunction for a one-layer vortex run with ß = 
.018; fields shown at t = 5. The actual streamfunction is superimposed, in 
dots. For the asymmetric field, the CI = ±[1 : 1 : 10]/250 and for the actual 
streamfunction, the CI = ±[.01.025.05.1 : .1 : 1]. 
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As demonstrated in Fiorini and Elsberry (1991), the gyres are clearly visible in 

plots of the streamfunction with the radially symmetric portion removed. Such a 

plot for the ß - 0.018 case at an early time is shown in figure 3.4 with the stream- 

function superimposed. The gyres were found by first locating the streamfunction 

maximum using two perpendicular spline fits in Matlab (The Mathworks, Inc.) 

(the maximum may not fall on an actual grid point), and then subtracting from 

the streamfunction the original Gaussian profile with the amplitude scaled to 

match. This method was found to be more accurate than calculating the actual 

radially symmetric portion of the streamfunction by averaging on the grid. 

The gyres are seen to straddle the vortex, so that the center of the primary 

vortex lies at the velocity maximum for the dipole (figure 3.4). The vortex trans- 

lates under the influence of these gyres, and the gyres move with it, evolving in 

time and eventually developing a more complicated modal structure (Willoughby, 

1994) so that the path becomes more complicated. The mechanism is nonlinear 

because it hinges on the interaction between the perturbed gyres and flow which 

generated them. For more detailed accounts, consult Fiorini and Elsberry, 1991; 

Willoughby, 1994; Sutyrin and Flierl, 1994; Resnik and Dewar, 1995. 

Numerical simulations of the weak ß vortex suggest that the vortex acceler- 

ates from rest before reaching a relatively constant velocity (e.g. McWilliams and 

Flierl, 1979; Fiorini and Elsberry, 1989). This can be seen in plots of the position 

of the vortex, (x(t),y(t)), as in figure 3.5. The duration of this state of steady 

translation is not known, because the vortex usually encounters boundaries, and 

higher order effects eventually alter the trajectory (Willoughby, 1994). However, 

this velocity is easy to measure and provides a useful tool for gauging the de- 

pendence on ßdimrl/U. Smith (1993) argued dimensionally that the translation 

velocity ought to vary as u6{^)n (where ug is the azimuthal or swirl velocity 

scale and n is some number) because these are the only important parameters for 

the case of an isolated vortex. Moreover, he found, by comparing data from pub- 
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Figure 3.5: The position of the vorticity centroid in (x,y) vs. time for a single 
layer vortex case with ß = .0018. The lines are drawn to indicate a constant 
velocity. 
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lished studies, that the magnitude of the velocity, i.e. y (§f )2 + (^f)2> appears to 

vary as ß* so that n = .5. 

The translation velocity was calculated with this model over a range of ß and 

the results are shown in figure 3.6. The upper panel shows that the dependence is 

roughly linear for ß > .25. This is to be expected in this limit for the velocity is 

simply the Rossby group velocity, linearly dependent on ß. The middle panel, a 

magnified view of the plot in the top panel, illustrates the nonlinear dependence 

for smaller values of ß. The bottom panel is a logarithmic plot of the small 

ß velocities and the solid line the result of a least-squares fit, with slope m — 

.45 ± .05, consistent with the empirical result of Smith (1993). Figure (3.6) also 

suggests a transition from nonlinear to linear behavior for ß = 0|1|. 

To summarize the one layer case, the evolution is found to depend on the value 

of the nondimensional parameter, ß = ßdimrl/U. If large (compared to unity), 

the vortex moves westward or along the isobaths, dispersing rapidly as Rossby 

waves. If ß is small, meridional motion is found and the dispersal is slower. The 

more nonlinear the vortex, the greater the number of closed contours of total 

PV, vV + ßy- Note that the parameter depends strongly on vortex size and 

inversely on vortex strength, so stronger, smaller vortices are more likely to be 

nonlinear. 

It should be emphasized that the monopole on a /3-plane is not a steady solu- 

tion (Flierl et al., 1983), so that in all cases the vortex must either disperse into 

waves or evolve to a state which is no longer monopolar. A detailed discussion 

of steady, isolated vortices can be found in Flierl (1987). 
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Figure 3.6: The translational velocity as a function of ß. The upper plot is the 
full range (with line to indicate a linear dependence), the middle plot is the small 
ß range of the upper plot, and the bottom plot is a logarithmic plot of the points 
in the middle plot. The error bars at the bottom are from the least squares 
fits of the vortex position curves. The straight line is the best fit, with slope 
m = .45 ± .05. 
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3.3    Two-layer results: A barotropic vortex 

The barotropic Gaussian vortex with the same amplitude and horizontal scale was 

also used for the two-layer /-plane runs. Thus the streamfunction and vorticity 

shown in figure 3.1 are also the streamfunction and the layer potential vorticity 

in the two-layer runs. 

With an initially barotropic vortex (C/a = U2) and equal layer depths (Fi = 

F2), there are two important parameters: Frl and ß2dimrl/U. As before, the 

radius to the maximum azimuthal velocity indicates the vortex scale so that 

r0/\i = rvrnaxy/Fi hereafter. Also as before, it is useful to define a nondimensional 

PV gradient relative to the vortex scales, ß2 = ß2di™rQ. Though the layer depths 

are assumed equal in most of the numerical examples, the scalings and expressions 

derived in the chapter retain unequal F\ and F2. 

The resulting parameter space is sketched in figure 3.7. Again the behavior in 

the limits of weak and strong slopes will be addressed first, before considering the 

evolution over intermediate slopes. The first case (A) is that of a vortex larger 

than deformation scale over a weak slope and the second (B) of a vortex smaller 

than deformation scale over a weak slope. Then the case of a small vortex over a 

strong slope (C) is considered before examining the intermediate slope response 

for the small vortex. The large vortex over a strong slope (D) and a discussion of 

the intermediate slope behavior for the large vortex follow. The latter transition 

region exhibits rich dynamics, so additional time is spent examining the behavior 

there. Finally, the single vortex results are summarized and discussed. 

3.3.1     Case A: r = 2.5A, ß2 = .02 

The total PV in each layer at a late time are shown in figure 3.8; the position of 

the vorticity centroid (s,-,y;) = ■* yJ'^A (where g{ = yVi + Fi{^3-i - ^0 is 
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Figure 3.7: The two-layer parameter space. The x-axis is the non-dimensional 
slope parameter, and the y-axis is the (squared) ratio of vortex radius to the 
deformation radius. The cases A, B, etc. are labeled in order of appearance in 
the text. 
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Surface Potential Vorticity 

>•   0- 

Bottom Potential Vorticity 

>- 0 

Figure 3.8: The upper and lower layer potential vorticity for the two-layer vortex 
with ro = 2.5A at t = 37.5 and ß2 = .02. The CI = ±[.51 : 1 : 10]. Also shown 
are the centroid positions drawn every two time units. The slope is shallowing 
towards the top of the figures. 
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the perturbation PV in each layer), is indicated every two time units, the upper 

layer with an (o) and the lower layer with an (x). The vortex is larger than 

deformation scale (r0/\ — 2.5), and is clearly translating as a barotropic vortex. 

The upper and lower centroids are aligned, and the specific features in the upper 

layer are mirrored in the lower layer. The vortex moreover strongly resembles 

its one-layer counterpart shown in the upper left panel of figure 3.2 in that it is 

in nearly the same location. The direction is nearly cross-isobath, with a weak 

"westward" drift. 

As in the one-layer case, one can calculate the asymmetric portion of the 

streamfunction in both layers. This was done by subtracting the original Gaus- 

sian (with the amplitude adjusted to match) from that of the vortex at the later 

time. The upper and lower centers of the vortex did not exactly coincide at any 

given time, so the process was carried out separately in each layer. The result, 

with the streamfunction superimposed, is shown at two different times in figure 

3.9. The gyres are found to intensify with time (as can be seen in the barotropic 

case) and are symmetric in the vertical. Thus while the perturbed vorticity field 

is entirely in the lower layer, the gyre streamfunction or flow field is equal in 

both layers and so are able to advect surface and bottom portions of the vortex 

equally. 

The gyres are comparable in intensity to those in the one-layer case, and thus 

the translation velocity comparable. The magnitudes of the translation velocity 

for the two-layer vortex and the one-layer vortex were compared and are shown 

in figure 3.10. The (x) in the figure is the two-layer translation velocity, and the 

(o) is the one-layer. ß2 has been scaled by a factor of -^ = | for the comparison 

with the barotropic case, because /?2 =   ^    = (1 + S)   £   . 

The magnitudes of the translational velocities are equal within error, as is 

the dependence on the PV gradient, so that for the two-layer vortex on a weak 
i 

slope, \u\ a ßl-  The agreement is perhaps not surprising, as one would expect 
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Figure 3.9: The upper and lower layer asymmetric streamfunction for the two- 
layer vortex with r0 — 2.5A and ß2 = .2 at t = 5 and t = 10. For the asymmetric 
field, the CI = ±[1 : 1 : 10]/125 and for the actual streamfunction, the CI = 
±[.025.05.1 : .1 : 1]. 
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Figure 3.10: The translation velocity obtained from fits of (x(i),y(i)) for the 
one and a two-layer vortex with ro = 2.5A. The 'x' indicates the two-layer 
velocity, the 'o' the one-layer velocity. /?2 has been scaled by a factor of 2 for the 
comparison—see text. The solid curve varies as /3?. The error bars are from the 
least square fits of the vortex position in time. 
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the dynamics in the deep layer to mimic those in the one-layer case. Of interest 

is that the top half of the vortex is carried along at the same speed.   There 

does appear to be a systematic deviation of the observed velocities from the 

curve, suggesting that a more complicated nonlinear relation may be required to 
i 

capture fully the actual dependence; however, a ß2
2 dependence is correct within 

the accuracy of the experiments. 

The evolution of the components of the energy balance (Chapter 2) can also 

be considered.  The energy components are shown in figure 3.11.   A barotropic 

initial state has no potential energy and, with equal layer depths (8 = 1), equal 

layer kinetic energies.  There is a slight increase in potential energy and loss of 

kinetic energy due to the weakening of q2 from the cross-isobath motion, though 

the changes are very small because ß2 is small.   More substantial changes are 

found later, in more baroclinic examples. 

3.3.2     Case B: r0 = MX, ß2 = .02 

A late-time plot of the PV in each of the two layers for the case of a vortex with 

r0 = .64A is shown in figure 3.12 and the evolution is clearly much different than 

that found in the previous example. The motion of upper and lower cores is no 

longer aligned, with the lower core moving to shallower water and eastward, and 

the upper portion arcing towards deeper water. The outer rings of vorticity have 

been strongly deformed, and also have no apparent vertical coherence. In addi- 

tion, the translation speeds (inferred from the spacing of the centroid markings) 

are more erratic and rapid. 

The vortex has separated into layer-trapped potential vortices, or vortices 

with layer-trapped expressions of potential vorticity. As discussed below, such 

vortices have nonzero flow in the opposite layer. This can be seen in plots of 

relative vorticity (figure 3.13); both vortices have relative vorticity of the same 
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Figure 3.11: The components of the total energy for the r0 = 2.5A vortex with 
ß2 = .018. 
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Surface Potential Vorticity 

>-  0- 

Bottom Potential Vorticity 

=^ 0 

Figure 3.12: The upper and lower layer potential vorticity for the two-layer vortex 
with r0 = .64A at t = 45. The CI = ±[.51 : 1 : 10]. Also shown are the centroid 
positions drawn every two time units. 
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sign in the opposite layer. With both vortices having non-zero flow at depth, 

each are able to self-advect over the slope. However the motion is more rapid 

and erratic than in case A. 

The separation is an example of the "twisting instability" of Flierl (1988), first 

noted by Gent and McWilliams (1985). The mechanism is clearly explained in a 

schematic in figure 7 of the former reference, and affects sub-deformation scale, 

isolated, barotropic vortices. Under the influence of a baroclinic perturbation 

(here the influence of the slope), the unstable vortex experiences a vertical mis- 

alignment between vortex cores and the outer ring. The misalignment between 

surface and bottom portions of the vortex leads to a dipolar coupling between 

ring and core in each layer with a velocity vector which is generally not parallel 

to that of the corresponding dipole in the opposite layer, so that the upper and 

lower portions move off in different directions. Here we find that the dipolar 

structure persists at finite amplitude, causing the rapid translation seen in figure 

3.12. 

Further numerical runs revealed that the line dividing case A and case B vor- 

tices is fairly distinct; a vortex with r0 = .82A separated, albeit more slowly than 

with r0 = .64A, whereas one with r0 — .9A did not. Gent and McWilliams (1985) 

calculated growth rates for a linearly unstable Gaussian vortex with continuous 

stratification and a constant Brunt-Väsälä frequency. They found that the maxi- 

mum growth rate occurred when the vortex horizontal scale was roughly .8 times 

the deformation radius, and that the vortex was stable if the scale was greater 

than 1.7NH/f. Flierl's (1988) stability calculations were for two-layer vortices, 

but with nested contours of uniform PV. However, if one assumes that his inner 

ring of vorticity extends to To and the outer ring to roughly 3ro, a reasonable 

choice, one finds his condition for instability is roughly (r0/A)2 < .8. The results 

here for two-layer Gaussian vortices are in rough agreement with the latter result, 

but differ somewhat from the Gent and McWilliams result.   The disagreement 
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Figure 3.13: The upper and lower layer relative vorticity for the two-layer vortex 
with r = .64A and ß2 = .02 at t = 45. The CI = ±[.51 : 1 : 10]. 
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appears to be related to the difference in stratification, as seen below. 

As mentioned, potential vortices have a non-zero streamfunction in the op- 

posite layer; the strength of that flow is weaker when the vortex is smaller than 

deformation scale. Consider a surface-trapped potential vortex; inverting the per- 

turbation vorticity relations, one finds expressions for the (transformed) stream- 

function in each layer: 

A = =^^ (3-3) 

r       —-^291 ,     . 
^2 = —£- (3.4) 

where A = K
2
(K

2
 + Fi + F2) and Fi = F2 = F by assumption.1 One sees that if 

K2 <C F, ipi « ip2 the streamfunction is nearly barotropic, though the potential 

vorticity is layer-trapped. 

Thus if the vortex in case A is thought of as an aligned pair of potential 

vortices, the streamfunctions strongly "overlap" in each layer. However, the 

overlap is markedly less in case B, because the vortex is smaller than deformation 

scale. So one might expect that the latter vortex will be less cohesive under 

the action of a perturbation. The "overlap" argument is insufficient to predict 

instability, in that it does not predict a sharp transition at TQ = A nor require the 

presence of the outer ring of oppositely-signed vorticity, a necessary component 

for the formation of layer dipoles. However, it does suggest that the "overlap" is 

xThe expressions are undetermined at K = 0 as qi(it = 0) = 92(« = 0) = 0 due to iso- 
lation (the K = 0 mode represents the domain-average ). On the other hand, the Gaussian 
streamfunction does have a non-zero domain average, or "angular momentum" in the language 
of Flierl et al. (1985). But as the constant portion of the streamfunction does not alter the 
velocity field, it is not of concern here. 
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Figure 3.14:  A run with with unequal layer depths, r0 = .90Ai = .4OA2.   The 
upper (x) and lower (o) potential vorticity centroids are shown every time step. 
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decreased if F2 is smaller, which is the case when the lower layer is deeper than 

the upper layer. 

Therefore an additional numerical run was made in which the vortex was the 

same size relative to the upper deformation radius as in case A, but in which 

the lower layer was four times deeper than the surface layer. The trajectories of 

the upper and lower PV centroids are shown in the lower panel of figure 3.14. 

The vortex does separate, as suggested by the above argument. A larger vortex 

is therefore required for stability, which may partially explain the higher cut-off 

predicted for the vortex with constant stratification by Gent and McWilliams. 

The Gaussian vortex is weakly barotropically unstable to azimuthal mode 

2 perturbations (Carton, 1989). However, the twisting instability is a mode 1 

barotropic instability, and stabilizing the m = 2 mode apparently does not damp 

it. An additional run was made with a 7~o = .64A vortex with tft a exp(—(—)1'75), 

which is stable to the m — 2 instability (Carton, 1989). The vortex also separated 

(not shown), and on the same time scale as the Gaussian vortex. In fact, the only 

case found in which the sub-deformation scale vortex did not separate involved 

a vortex with no outer ring of vorticity (see Appendix A). 

As in case A, the components of the total energy for the r0 = .64A vortex were 

computed, and are shown in figure 3.15. The separation into baroclinic vortices at 

t = 30 appears as a loss of kinetic and growth of potential energy, but thereafter 

the components are relatively constant. Recall that the terms represent domain 

averages, so that each term has contributions from both vortices. The potential 

energy is less than either kinetic energy term. This is a general feature of layer- 

trapped potential vortices with equal layer depths; using the expressions for the 

streamfunctions for the surface vortex in (3.3-3.4), one can write the contribution 

to the potential and upper layer kinetic energies at wavenumber re as: 
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Figure 3.15: The components of the total energy for the r = .64A vortex with 
ß2 = .018. 
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KEM) ~ TT8K m - TTs Ä*  (3-5) 

"u-jfr-u-Th^      ^ 

so that the ratio of KE^K) to PE(K) is 

(/c2 + F2f 
K2FX 

(3.7) 

If Fi — F2, this is always greater than one and so the the sum over all wavenum- 

bers is also greater than one. Thus the potential vortex has more kinetic energy 

in the primary layer than potential energy. 

A subtle aspect of the energy plot in figure 3.15 is that the upper layer kinetic 

energy and the potential energy oscillate slightly, and are out of phase. This is a 

result of the conservation of potential vorticity in the surface layer, where changes 

in relative vorticity must be offset by equal changes in stretching, and is primarily 

due to undulations in the shape of the surface vortex. The effects of this and the 

exchange in energy it represents are small in this case, but they will be found 

to be important in the case of many surface vortices, as seen in the following 

chapter. 

To summarize the results thus far, one finds that the two-layer vortex over a 

weak slope can be regarded as a pair of vertically aligned potential vortices. If 

the pair are larger than deformation scale, they remain aligned and move over 

the topographic slope almost exactly as a one-layer vortex. But if smaller than 
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deformation scale, they separate into layer-trapped potential dipoles, and move 

rapidly away from one another. The point of transition from barotropic to baro- 

clinic motion at 7"o ~ A is predicted by the linear instability analysis of Gent 

and McWilliams (1985) and Flierl (1988). The transition was explained here 

in terms of a heuristic argument about the "overlap" of the constituent vortex 

streamfunctions. 

3.3.3     Case C: r0 = -64A, ß2 = 36 

The potential vorticity and streamfunction fields at an early time and later on 

are shown in figure 3.16 for the case of the r0 = .64A vortex with ß2 = 36. Note 

that the left hand panels are not at t = 0, but shortly thereafter; the t = 0 fields 

are identical to those in figure (3.1). The numerical sponge layer (Chapter 2) 

was used for this run, due to the great velocity of the departing waves. While 

the sponge greatly damps re-entrant waves, weak, large-scale waves remain; so 

the t = 2.0 field has been averaged with the fields at t = 1.9,2.1 to reduce the 

wave contributions. One can see that the temporal evolution is much different 

than in the previous case (compare the potential vorticity to that in figure 3.12). 

In particular the lower layer perturbation PV disperses rapidly into topographic 

waves, while the upper layer potential vorticity remains essentially unchanged. 

The t = 0.1 frame of the lower layer perturbation PV strongly resembles the 

one-layer case shown in the lower right panel of figure 3.2, and, as in that case, 

the initial perturbation to the total lower layer PV due to the bottom vortex 

only weakly disturbs the strong background gradient. Indeed, one might have 

anticipated a similar evolution in the lower layer, but the stationarity of the upper 

layer potential vorticity is perhaps less expected. The lower layer streamfunction 

rapidly disperses also, while the upper streamfunction is only weakly perturbed. 

The final state has a surface-trapped vortex which appears to have zero flow 
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Figure 3.16: The fields for the two-layer vortex with TQ = .64A and /?2 = 36 at 
t = .1 and t — 2. The initial fields, not shown, are identical to those in cases A 
and B. The upper PV CI = ±[1 : 1 : 10], the bottom PV CI= ±[.3 .9 1.5 2.1 2.7] 
and the streamfunction CI = ±[1 : 1 : 10]/10. The t = 2 fields are averaged from 
three realizations, at t = 1.9,2,2.1. 
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at depth 2. In other words, the surface vortex differs from that found in the 

weak slope case which had zero potential vorticity but non-zero flow in the op- 

posite layer; this vortex does have a slight expression in potential vorticity in the 

opposite layer, and it is negative. 

Due to the severity of the slope, the temporal changes in potential vorticity 

are essentially linear, which prompts consideration of the linear solution. The 

linear versions of the two-layer equations (2.1-2.2) are: 

!* = 0 (3.8) 

|?2 + A|-V'2=0. (3.9) 
ot ox 

Substituting in (1^1,1^2) a exp(ikx + Hy — iwt) yields two solutions. The first is 

a propagating mode, the topographic Rossby waves, with 

UJ 
-ß2k      K2 + Fi 

(3.10) 

and 

* = «rjhi*- <3-n) 

2
A choice of weaker contours would reveal an averaged wave signal, but no apparent flow 

associated with the vortex. 
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The latter relation signifies that the waves are bottom-intensified, because ipx < 

tp2- These waves have zero surface potential vorticity, i.e. qi = 0 identically. This 

solution is well-known (e.g. Rhines 1970; Pedlosky 1987), however, the equations 

have a second solution which is less frequently discussed, i.e. a stationary mode 

with u} = 0. This mode carries the surface potential vorticity. It also has zero 

lower layer streamfunction, for if not, fluid could move across isobaths which 

would generate waves, violating stationarity. 

An initial value problem on a two-layer topographic /3-plane is characterized 

by the separation into propagating and stationary modes. In other words, the 

lower layer streamfunction disperses into propagating waves, leaving the surface 

potential vorticity unchanged. The remaining properties of the stationary flow 

can be predicted, given these two fields: 

* = A (3'12) 

and 

^ = F^ = -^r- (3-13) 

A __ A 

The upper layer streamfunction is equivalent to ipi(t = 0) — Kf*F fait = 0), or 

the portion of the initial streamfunction left over after removal of the projection 

of the waves onto the surface layer, and is therefore weaker than the initial 

streamfunction if the lower layer streamfunction is of the same sign. For the 

barotropic vortex, the upper layer streamfunction is decreased by a factor   2* 

72 



so that vortices larger than deformation scale have less than half the initial flow 

at the surface, but the loss is less for smaller vortices. Note also that the final 

lower layer PV is solely due to interfacial stretching caused by the upper layer 

flow, and therefore reflects the final vortex potential energy. 

An important consequence of this prediction for the form of the final vortex 

is that it does not depend at all on the initial lower layer PV, only on q\. Thus 

an initially barotropic vortex and one which initially has no flow at depth will 

yield the same final vortex (identical to the latter vortex) if the two have the 

same surface PV. This does not, of course, imply an independence of ip2 because 

i/>2 in part determines qi, and the loss of the tpi to waves is directly proportional 

to Tp2- However, the importance of q\ must be emphasized. 

The actual surface layer streamfunction and that predicted by linear theory 

are shown in figure 3.17; again the late observed field is averaged to remove re- 

entrant waves which are roughly 5% the amplitude of the vortex. The amplitude 

and scale of the two agree quite well, though the predicted amplitude is somewhat 

less than observed and the predicted upper layer azimuthal velocity, -J^- changes 

sign, unlike the observed vortex. These differences persist in runs made without 

a sponge layer and with higher resolution (1282 grid points as opposed to 642), 

but are not substantial. The final streamfunction is somewhat weaker than the 

initial profile, shown at upper left and as the solid line in the cross-section profile 

at lower right. 

The total energy and its components are shown in figure 3.18. Unlike in the 

ß2 = .018 case, the total energy is not conserved, owing to removal of the waves 

by the sponge layer. 3 Likewise, KE2 is decreasing, but note that it does not 

decay to zero, revealing that the while the waves have been damped, they have 

not been obliterated.   The waves also contribute to KE\ and PE (see below), 

3It was noted in Chapter 2 that the sponge only acts on the lower layer perturbation PV. 
The reason for this is clear now; as the waves have zero surface PV, there is no need to damp 
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Figure 3.17: The initial and final streamfunction with that predicted by a linear 
evolution; the r0 = .64A vortex with ß2 = .018. The CI = ±[1 : 1 : 10]/10. The 
t = 2 fields are averaged from three realizations, at t = 1.9,2,2.1. In the cross 
section plot, the solid curve is the inital vortex, the dashed curve is the vortex 
at t = 2 and the dash-dot curve is the predicted profile. 
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but the largest contribution to these terms in this case is from the vortex itself. 

The vortex has more kinetic energy than potential, owing to the fact that it 

is smaller than deformation scale (see also below). This fact is reflected in the 

small amplitude of <?2 under the vortex, seen on the right in figure 3.16. The 

vortex energy components are seen to be oscillating out of phase, as was sug- 

gested in Case B; this is due to undulations in the vortex shape, due primarily to 

continued perturbations by re-entrant waves. As stated before, the fact that the 

oscillations are out of phase is required by conservation of the surface potential 

vorticity. The re-entrant waves are weaker than the surface vortex, so that the 

perturbations to the shape of the latter are fairly small. The deformations are 

more severe when the vortex is weaker, as in case D. 

Vortex and wave energy in the linear case 

It is simple to derive the energy of the waves and the vortex from the linear 

solution, and those terms are presented here for completeness; the uninterested 

reader may skip ahead to the discussion of intermediate slopes at ra = .64A. 

The question of how much wave energy is generated when a ring impacts 

a slope has been of some interest, for energetic topographic waves are often 

witnessed on the continental slope and may play a significant role in variability 

there (e.g. Thompson and Luyten, 1976; Hogg, 1981; Smith, 1983; Pickart, 1995). 

Louis and Smith (1982) and later Shaw and Divakar (1991) addressed the issue 

with models and found significant wave energy generated by a ring on the shelf 

(the latter authors also noted that one should expect compensation of the vortex 

after radiation). The energy which is carried off by the waves is easily found from 

the linear solution discussed above. It is assumed that all of rp2 and a portion of 

ipi — aVj. ip2 projects onto the waves. Given this, the wavenumber components 

of the total wave energy follow: 
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Figure 3.18: The components of the total energy for the r0 = .64A vortex with 
ß2 = 36. The upper solid curve is the total energy, the lower solid curve is KE\, 
the dashed curve is KE2, and the dash-dot curve is PE. 
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**-<«>-iWäj^i'- (314) 

KE2W(K) = —-«2|<A2|
2, (3.15) 

1 + 0 

1 KAF< 
PE"^ = TTsWTk^' (3'16) 

where the subscript (w) denotes wave. The total wave energy is then: 

1    ,(6F? + K
2
F2)K r^sErt-/—;;r+o .2M?   |2 H- (3.17) 

Thus in the linear system, the total wave energy is not known unless the initial 

vortex flow at depth is known. This construction is useful if one knows the profile 

of the vortex prior to its impacting the slope, however it is less useful if the ring 

is actually formed over topography. The latter scenario may be important as well 

because Gulf Stream meanders are also suspected to generate topographic waves 

(Hogg, 1981; Pickart, 1995), 

The remaining (vortex) energy can likewise be found: 

6 *'       "|2, (3.18) K^K) = TTs{^F^m 

PE^=ihi^y^2' (3-19) 
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T*=??ir$T#*i*- (3-20) 

where the (v) denotes vortex.   Note that the ratio of vortex kinetic energy to 

potential energy at wavenumber K, is just: 

6K
2
      K

2 
KE1V(K)/PEV(K) = J^ = ^ (3.21) 

or the (squared) ratio of the deformation radius to vortex scale. For the vortex 

in Case C, one expects then an excess of KE, as seen in figure 3.18. Vortices 

larger than deformation scale on the other hand are expected to have an excess 

of potential energy (see below). 

One can also calculate the ratio of wave energy at a given wavenumber to 

vortex energy, assuming the initially barotropic vortex, as in the numerical ex- 

amples. This ratio is: 

TEW{K)ITEV{K) = -{I + ^4^) (3.22) 
0 Kr 

or (1 + ^Y) for equal layer depths. This ratio is always greater than one, as the 

waves take all of the lower layer streamfunction and a portion of the upper. The 

only case in which the vortex might have more total energy is when the lower 

layer is shallower than the upper (6 > 1). Other relations may be derived for 

vortices with different initial vertical structure. 
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3.3.4    Intermediate slopes with r0 = .64A 

The case of a sub-deformation scale vortex over two extremes of topographic 

slope has been considered. Over a weak slope, the initially barotropic vortex 

was found to break apart by a barotropic instability, and over a strong slope, 

the vortex rapidly split into a surface vortex and bottom-intensified waves. How 

do these two scenarios merge over intermediate slopes? Figure 3.19 presents PV 

plots which are representative of the barotropic vortex after its initial adjustment 

over various grades of slope. One finds less and less perturbation to the upper 

layer potential vorticity over steeper slopes, with less translation of the upper 

vortex. One also finds a more rapid transition to waves in the lower layer. 

The differences are related to the interaction between the surface and bottom 

PV anomalies. As might be deduced from the one-layer case (figure 3.2), increas- 

ing ß2r\jU increases the decay rate of the vorticity anomaly in the lower layer; 

over extreme slopes, the decay effectively occurs before the upper layer PV can 

react. Over a weak slope, the decay rate is gradual, so that the lower vortex, 

displaced from the upper vortex as it begins to translate, can interact with the 

upper vortex. The result is the severe deformation of the outer rings of vorticity, 

and the formation of layer-trapped dipoles. 

Over intermediate slopes, one finds that the lower anomaly separates faster 

from the upper vortex, due to the greater translational velocity (recall \u\ a ß^2). 

This, coupled with the faster decay time of q2, decreases the impact on the surface 

vortex. The outer ring of vorticity is disrupted in the ß2 = .18 case, and less so 

in the ß2 = 1.8 when the decay of the lower vortex is even more rapid. Thus 

the change in evolution can be linked to changes in the lower layer vortex, which 

in turn could be inferred from the one-layer vortex results. The shift in the 

character of the runs thus also occurs around (non-dimensional) ß2 = 1. 

In the weak slope case, the initially barotropic vortex can be conceptualized 

as a pair of aligned potential vortices, so that the surface vortex has a non-zero 
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Figure 3.19: The upper and lower potential vorticity for the r0 = .64A vortex with 
various bottom slopes. The upper PV CI = ±[1 : 1 : 10] for qi and bottom PV 
CI were chosen to yield 15 contours in the range of the minimum and maximum 
values of q2 + ß2y. The corresponding times are t — 45 {ßz = .018), t — 20 (/?2 = 
.18), t = A(ß2 = 1.8), t = .5 (ß2 = .018). 
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flow at depth if the vortex separates. In the strong slope case however, the vortex 

is really a surface-trapped relative vortex because the flow at depth must cease 

if the vortex is to be steady. Thus the transition in slope heralds a transition in 

the vertical structure of the resulting vortex or vortices as well. 

Visually, the transition would be far less dramatic if the vortex were smaller. 

As shown by Flierl (1988), the twisting instability is also bounded by a neutral 

stability curve for smaller vortices; this is because the interaction between sur- 

face and bottom anomalies is weaker for vortices progressively smaller than the 

deformation radius, as one can readily see in the expression for ip2 for the surface 

potential vortex in (3.4); tp2 a ^ when K,
2
 » F-i,F2, so that the surface vortex 

has vanishing flow at depth and is consequently unable to advect the lower vor- 

tex, and vice versa for the bottom vortex. Thus if the runs had been made with 

a sufficiently small vortex, q\ would not have evolved. In this case, varying ß2 

would not have affected the surface vortex. 

3.3.5     Case D: r = 2.5A, ß2 = 36 

It was noted in the previous sections that the loss of i])\ to the waves and the 

strength of interaction between the upper and lower portions of the vortex depend 

on the ratio ro/A. Thus it is of interest to consider a vortex which is substantially 

larger than the deformation radius, to see what happens when the surface vortex 

is greatly weakened by the radiation. 

The potential vorticity plots in figure 3.20 are from such a run, with r0 = 2.5A 

and ß2 = 36. Note again the late time plot shows an average of the fields at 

t = 1.9,2.0,2.1. The propagating waves are now nearly barotropic, as can be 

seen in the streamfunction plots at t = 0.1, and thus the final surface vortex 

streamfunction is greatly weakened (i = 2.0). However, again there is little 

change in q^\ the loss in surface relative vorticity has been balanced by a gain 
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in stretching. Thus, although the vortex is substantially larger than deformation 

scale, the decoupling effect of the slope is strong enough to prevent barotropy. 

This effect is considered more quantitatively in what follows. 

One can again apply the linear model to predict the final streamfunction, 

and the result is shown in figure 3.21. The amplitude and size of the vortex 

is predicted well, again suggesting that linear dynamics are appropriate. The 

observed streamfunction at t = 2 has been averaged as in the previous figure, 

because the residual waves now have an amplitude in layer one comparable to 

that of the vortex. 

This can also be seen in the plot of the energy components, shown in figure 

3.22. The upper plot shows the full components, while the lower plot shows only 

the vortex contributions to the potential and surface kinetic energy (as shown 

above). The greater decline in KE\ reflects the loss to the near-barotropic waves, 

and the loss of total energy is thus also greater than in the r = .64A case. 

The energy appears roughly equipartitioned by t — 1, but in fact the vortex 

potential energy exceeds its kinetic energy, as shown in the lower panel and 

as one would expect for surface-trapped vortex larger than deformation scale, 

given the previous energy arguments (see 3.21). The vortex kinetic energy is 

less than half the total surface kinetic energy; the residual waves are thus equally 

energetic and the departed waves far more energetic. As before, the vortex energy 

oscillations are clearly evident. In contrast, the wave energies are not oscillating 

(note that KE2 is much "flatter") because perturbation PV is not conserved in 

layer 2 (which has consequences in the turbulence experiments of the following 

chapter). 

It is interesting to contrast the changes due to the transition in ro/A in the 

ß = 36 case with that in the ß = .018 case. In the latter, the boundary between 

translating barotropic solutions and solutions which separated into baroclinic 

vortices was found to be quite distinct; under the criteria of separation during 
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Figure 3.20: The fields for the two-layer vortex with r0 = 2.5A at t = .1 and 
i = 2. The upper PV CI = ±[1 : 1 : 10], the bottom PV CI= ±[.3 .9 1.5 2.1 2.7] 
and the streamfunction CI = ±[1 : 1 : 10]/10. The t = 2 fields are averaged from 
three realizations, at t — 1.9,2,2.1. 
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Figure 3.21: The initial and final streamfunction with that predicted by a linear 
evolution, for the r0 = 2.5A vortex with ß2 = 36. The CI = ±[1 : 1 : 10]/20. The 
t = 2 fields are averaged from three realizations, at t = 1.9,2,2.1. In the cross 
section plot, the solid curve is the inital vortex, the dashed curve is the vortex 
at t = 2 and the dash-dot curve is the predicted profile. 
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Figure 3.22: The components of the total energy (upper panel) for the r = 2.5A 
vortex with ß2 = 36.  Shown are total energy (upper solid), KE\ (lower solid), 
KE2 (dashed), and PE (dash-dot). The lower panel shows the vortex energies, 
KE\ (solid) and PE (dash-dot). The negative energies in the lower plot are an 
artifact of subtracting the waves from V'I to determine the vortex energies. 
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the length of the numerical run, vortices with r0 = .82A separated and those 

with r0 = .9A did not. The figure 2 of Gent and McWilliams (1985) shows a 

similarly rapid variation in growth rate over a small range of vortex sizes. In 

contrast, essentially the only difference between the 7*0 = .64A and r0 = 2.5A 

cases over the steep slope is the relative amount of energy taken up by the sta- 

tionary vortex and the propagating waves. Both cases yield a baroclinic vortex 

and bottom-intensified waves. This reflects the fact that when ß2 > 1, the slope 

favors baroclinic surface motion, regardless of the scale of motion. This is exam- 

ined further below, when the role of the slope in baroclinic instability is discussed. 

3.3.6     Intermediate slopes with r0 = 2.5A 

Representative late-time PV plots in four cases spanning weak to strong slopes 

for the 7*o = 2.5A vortex are shown in figure 3.23. The behavior in the ß2 = 

.18 case appears similar to that in the weaker slope case, i.e. the vortex is 

aligned vertically and translating to the northwest. However, the cross-isobath 

displacement has weakened the lower core, suggesting that the coupled motion 

must cease at a later time when the lower vortex disperses (this could not be 

proven with this run however because the vortex soon after began to interact with 

its own wake, which altered its trajectory). The vortex is much more deformed 

than in the weaker slope case, and the outer ring of vorticity has been stripped 

off as a consequence. 

When the slope is 0\1\ or larger, the decay of the bottom vortex happens more 

rapidly. One might expect only a surface vortex after some initial adjustment. 

However, as seen in the figure, the transition over the 0|1| slope is found to be 

a destructive one for the surface vortex. At the late time, the surface vortex has 

fissioned into two portions, and the lower layer is still active, suggesting wave 

radiation from the surface vortices. 
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Figure 3.23: The upper and lower potential vorticity for the r0 = 2.5A vortex with 
various bottom slopes. The CI = ±[1 : 1 : 10] for 91 and the bottom PV CI were 
chosen to yield 15 contours in the range of the minimum and maximum values 
of q2+ß2V- The corresponding times are t = 37.5 (ß2 = .018), t = 20 (ß2 = .18), 
t = 10 (ß2 = 1.8), t = .5 {ß2 = .018). 
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The potential vorticities for the case with ^2 = 1-8 at several successive times 

are shown in figure 3.24. In addition to the sponge, a filter was applied at t = 5 

to remove the energetic re-entrant waves, 4 so that flow in the lower layer after 

this time was directly forced by the upper vortices. Initially, the upper vortex 

is displaced and deformed. The stretched surface vortex then appears to break 

into two portions, with significant simultaneous filamentation and dissipation of 

the surface PV. Thereafter, the stronger vortex rotates and is deformed further, 

and appears to be radiating waves in the lower layer. 

There are two phenomena which contribute to the complicated evolution in 

this case. First, there is the intense shearing of the upper vortex during the 

separation from the lower. Secondly, the final vortex is surface-trapped and 

larger than deformation scale, and is thus potentially baroclinically unstable. 

Figure 3.25 shows the shearing of the upper potential vorticity anomaly by 

the dispersing lower vortex. The left column is the surface potential vorticity, 

the center column is the vortex streamfunction defined as ij)\v = ^fp , and the 

right column the upper layer portion of the "waves", ^iw = -3^%-. The latter 

decomposition is only strictly valid after the lower vortex has dispersed, but is 

useful for illustration. Clearly the wave portion of the upper layer streamfunction 

is more intense than the vortex portion, so that one could approximate the surface 

PV equation with the linear approximation: 

giqi + J(-<Piw,qi) = 0- (3.23) 

Such an equation describes the advection of a passive tracer by a background 

Specifically, the lower layer PV was "reset": 92 —► K*+F 
S0
 ^at on'v *^e stretching 

due to the vortices in the upper layer is retained. This may be justified because, in the 
ocean, topographic waves generally radiate far from the vortex rather than circulating and 
re-interacting. 
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Figure 3.24: The upper and lower PV for the r0 = 2.5A case with ß2 = 1.8. The 
gi CI = ±[1 : 1 : 10] and the q2 CI = ±[.3.81.422.6]. Note that the scale is 
expanded in the lower left figure for detail. The wave field has been removed at 
t = 5 (see text). 
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Figure 3.25: The shearing of the upper vortex during separation for a vortex with 
r0 = 2.5A and ß2 = 3.6. The larger slope was chosen to accentuate the effect. 
The upper layer PV is at left, the vortex streamfunction is in the middle, and 
the "wave" projection in layer one at right. The q\ CI= ±[1 : 1 : 10] and the 
stream CI = ±[1 : 1 : lOj/10. 
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flow (e.g.  Babiano et al., 1987), and the i I = 1.75 frame also seems to suggests 

the straining of a passive tracer. 

Given the wave/vortex streamfunction decomposition, one can derive an ap- 

proximate scaling for the deformation of qi . Under the decomposit] on, the upper 

layer PV equation becomes: 

—9i + J(V»i»,9i) + J(i>iw,qi) = o. (3.24) 

Scaling the terms again assuming the time scale of the waves, one obtains pa- 

rameters for the Jacobians:   ^k and f1^.  For deformation to occur, the third 
fcT* PIT* ' 

term is larger than the second and must be 0|1| (or else j^qi « 0). Using 

ipiw — K^F ^w, these conditions reduce to the simultaneous necessary condi- 

tions: 

Firl      Uz   =0\1\ (3.25) 
1 + F1r

2
0ß2rl 

and 

2U2 
Fir2

0-f>l. (3.26) 

If the vortex is barotropic, it must be larger than deformation scale and the 

nondimensional ß2 must be 0|1|. If /32 ^> 1, then the waves disperse too rapidly 
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to affect qi as in case D; if ß2 <C 1, the wave decomposition is not proper because 

the lower vortex is not dispersing, and we find the vortex translates barotropically 

as in the weaker slope cases. In other words, deformation occurs in a relatively 

small region of the barotropic vortex parameter space (and may not occur at all 

for vortices with initially weak deep flow.) 

In the second portion of this chapter, the relationship between the slope and 

baroclinic instability is examined, and it is found that a strong slope (F2Ui/ß2dim *C 

1) can stabilize a surface vortex. One has two choices for U\ with the initially 

barotropic vortex: the initial value, or that after wave radiation. The latter can 

be predicted by the linear model: V>i/ = J1 F -01,. Wave radiation causes about 

a 70% decrease in the magnitude of ^ (and U\) for the vortex with r0 = 2.5A. 

The vortex in case D has F2U1(0)/ß2 « 0.18 and F2U1(tf)/ß2 « 0.05 and thus 

is likely to be stable. However, the ß2 = 1.8 case has F2Ui(Q)/ß2 « 3.6 and 

F2Ui{tj)lß2 fa 1 and is thus likely to be unstable, even after radiation. One finds 

that the vortex of figure 3.24 appears to radiate waves (and so lose energy) later 

on, but does not break up further. 

To summarize the large vortex runs, again there is a qualitative change in be- 

havior around ß2 = 1. The barotropic vortex remains barotropic when jö2 < 1; 

when ß2 ~> 1, the behavior is similar to that of the r = .64A vortex, but for the 

greater weakening of the surface vortex by wave radiation. However, the transi- 

tion region is quite different as two additional effects become important: shearing 

of the surface vortex by the near-barotropic waves, and baroclinic instability of 

the final vortex. The former effect was argued to be pronounced due to the 

strength of the deep vortex (due to the choice of an initially barotropic vortex). 

For the more commonly found surface-intensified oceanic ring, the instability is 

more likely to be important. 
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3.4     Two-layer results: A surface vortex 

In cases in which the vortex is initially surface-intensified, or when the bottom 

slope is large enough to disperse the lower portion of the initial vortex, and in 

which the vortex scale exceeds the deformation scale, baroclinic instability of the 

surface vortex may be important. If the vortex is unstable, energy will be lost to 

the lower layer or the surface vortex may break into smaller vortices, but as will 

be seen, a steep bottom slope tends to stabilize the vortex. 

The stability of a baroclinic vortex has been studied previously in the labo- 

ratory by Saunders (1973) and Griffiths and Linden (1981), and theoretically by 

Ikeda (1981), Pedlosky (1985), Flierl (1988) and Helfrich and Send (1988). The 

general picture which emerges is that vortices which are sufficiently larger than 

deformation scale and in which the barotropic circulation is not overly strong 

are baroclinically unstable. The most unstable azimuthal mode increases with 

vortex scale. In the finite amplitude state, the larger vortices may break into 

separating baroclinic dipoles (Ikeda, 1981; Helfrich and Send, 1988) of the sort 

categorized by Flierl et al. (1980), finite-area versions of the "hetons" of Hogg 

and Stommel (1985). 

The stability of a vortex over a slope has received less attention. Hart (1975) 

considered the linear stability of a surface-trapped circular flow in two layers in a 

circular basin. He found that a weak slope tended to destabilize the surface flow 

by shifting the short wave cut-off for instability to smaller wavelengths. However, 

he also noted that steeper slopes damped growth rates, and postulated that the 

vortex would become completely stable in the limit of a very large slope when 

fluid trajectories would be constrained to be along isobaths. 

One can see similar slope-induced effects in the (simpler) case of a surface- 

trapped parallel flow at an angle to the isobaths. The linear growth rate is found 

exactly as with a non-zonal flow on the /3-plane (Pedlosky, 1987, section 7.13). 
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The absence of a PV gradient in the surface layer means that a constant flow at 

the surface is a steady solution and need not be balanced by a forcing function. 

Following Pedlosky (but with a slope) the linearized two-layer equations with 

üx = U,v1 = V, ü2 = 0, üi = 0, and a disturbance (^i,^2) = (A,A2) e
ikx+ily-i,rt 

are: 

A1[(a - Uik - FI/)(AC
2
 + FJ + F^U^k + VIZ)] - A2F1[a -Uk-Vl} = 0 (3.27) 

A2[<T{K
2
 + F2) + ß2k - F^k + ViZ)] - AxF2a = 0 (3.28) 

where K
2
 = k2 + l2 is the total squared wavenumber. As in Pedlosky, the following 

substitutions are made to simplify the equations: 

_a       TT_U1k + V1l _ß2k 
c = -  ,   U =   ,   rj2 =  (3.29) 

/c «c /c 

so that (3.27-3.28) become: 

Ai[(c - U)(K
2
 + FJ + FJf] - A2Fx{c -U) = 0 (3.30) 

A2[C(K
2
 + F2) + T/2 - F2U] - A1F2c = 0. (3.31) 
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Non-trivial solutions for the Ai are obtained when: 

U(K
2
 + 2F2) rj2(^ + Fl) ^ 

2(/c2 + F1 + F2)     2/e2(/<2 + F, + F2)     2(/c2 + F, + F2) ' {       > 

where the radical, 7, is given by: 

7 = (K
2
 + Fif-ql + 2C//c2[/c4 + FXK

2
 - 2F1F2)r}2 + U2

K
4
[K

4
 - AF1F2].     (3.33) 

Growth of the disturbance occurs when 7 < 0.   For the flat bottom case, this 

requires K
2
 < 2->jF\F2 or the scale of motion exceeds the mean deformation scale. 

Small values of rj2 can destabilize the flow, as in Hart (1975), because the term 

linear in 7/2 in (3.33) is negative when U is negative; thus smaller scales (larger 

K2) may be unstable over a weak slope. A strong slope can stabilize the flow 

by making (3.33) always positive. Assuming equal layer depths and a vortex 

approximately deformation scale, the ratio of the third and first terms is (—)2, 

so if A (defined with 7]2) is smaller than one, the radical is likely to be positive. 

However, there is a catch because the stabilizing effect depends on the orien- 

tation of the flow due to the /^-dependence of 772 (in relations 3.29). In particular, 

a disturbance with k — 0 is always unstable if I2 < 2y/FxF2. In this case the par- 

ticle motion is parallel to the isobaths, so that the disturbance effectively does 

not feel the slope. The same is true on the /3-plane, a central reason for why 

nonzonal flows are more unstable than their zonal counterparts (Kamenkovich 

and Pedlosky, 1996). 

While the zonal flow instability predicts similar slope-induced effects to those 

described by Hart for a vortex over a slope, one expects that the vortex case 
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may be more complicated. For instance, the sign of the "meridional" gradient of 

surface PV is different on the "north" and "south" sides of the vortex, so it might 

seem that a slope would only be able to stabilize one side of the vortex. Also, 

the orientation of growing disturbances with respect to the isobaths will change 

if the azimuthal phase speed is nonzero, which in turn could alter the instability 

of the k = 0 mode. 

Several numerical runs were made with surface vortices. The streamfunc- 

tion (ipi = — .7exp(—(jfg)2), and ij}2 — 0) is the surface portion of the previous 

barotropic vortex. Zero bottom flow was chosen to avoid wave-induced defor- 

mation of the surface vortex. The main case had a vortex equal in size to the 

"large" vortex, i.e. TQ = 2.5A. In addition, a perturbation of azimuthal mode 2 

was added to the resulting surface relative vorticity at 20% of the amplitude of 

the surface relative vortex (mode 2 is the fastest growing for this size vortex over 

a flat bottom; Flierl (1988)). The vortex is stronger than that obtained after 

wave radiation in the barotropic 7"o = 2.5A cases, but will suffice to illustrate the 

dependence of the instability on the slope. 

Three representative cases are presented in figures (3.26, 3.27, 3.28). The 

flat bottom case (fig 3.26) is representative of the instability: the large surface- 

trapped vortex splits into two deformation-scale baroclinic dipoles which move 

away from one another. Each dipole consists of a surface cyclonic potential vortex 

and a bottom anti-cylconic vortex displaced horizontally from it. A small surface- 

trapped potential vortex remains behind, at center, so three surface vortices have 

been produced by the instability. In general the evolution here closely resembles 

that in figures (7-8) of Ikeda (1981) and figure 6 of Helfrich and Send (1988). 

Over a moderate slope instability still occurs, and on the same time scale 

(figure 3.27)5.   The slope was such that A = 1.8, or alternately fey' = 3.6. 

5This run is not meant to illustrate destabilization by the slope.  To illustrate that effect, 
one would have to consider a smaller vortex which was stable over a flat bottom. 
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Figure 3.26: A surface-trapped vortex (^i = — .7exp(—(^r)2), and tp2 = 0) 
over a flat bottom with r0 = 2.5A. From left to right are the surface PV, deep 
PV, surface streamfunction, and deep streamfunction. The surface PV contour 
intervals are C.I. = ±[5:5: 50]; the bottom PV CI= ±[.3 .9 1.5 2.1 2.7]; the 
streamfunction C.I. = ±[.05 .1 : .1 : 1]. Different axes are used in the bottom 
row for detail. 
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There are closed contours of lower layer PV at t = 0 as the interface contribution 

to ^2 overwhelms the slope contribution immediately beneath the vortex, and 

indeed the slope does not block instability. Plots of the energy (see below) reveal 

that the loss in potential energy in this case is of the same magnitude and occurs 

as rapidly as in the flat-bottom case. Thus the slope has not appreciably altered 

the domain-averaged transfer of energy. 

However, there are qualitative differences between this and the flat-bottom 

cases. Unlike the flat-bottom case, instability does not yield baroclinic dipoles; 

rather, the slope is large enough ( 2t^mr° > 1; Chapter 3) so that radiation at 

depth is favored over coherent vortex formation, hence the lower vortices disperse. 

Likewise, the surface vortices are unable to move without the deep vortices; the 

surface PV is fractured, but remains more or less local. The break-up of the 

q\ field is apparently quite turbulent, because there is much more small-scale 

structure than in the fiat-bottom case. At later times, one finds that three long- 

lived surface vortices remain, however they are smaller than their flat-bottom 

counterparts. 

The defeat of baroclinic dipole formation does not imply that the energy re- 

mains local however, for the dispersing topographic waves carry off energy, as in 

the strong slope cases in Chapter 3. These waves can be seen in the streamfunc- 

tion fields at t = 10 and t — 15 in figure (3.27)6. In that the deep disturbances 

are radiated away, the instability resembles the "radiating instability" on the ß- 

plane discussed by Dickinson and Clare (1973), Talley (1983) and Kamenkovich 

and Pedlosky (1996). As discussed in the last reference, unstable flows generally 

have trapped and untrapped growing disturbances, but only the latter can trans- 

port energy away from the primary current. Non-trapped disturbances may be 

important in explaining eddy kinetic energy in parts of the ocean far from the 

unstable boundary currents. The radiating modes also reduce available potential 

3No sponge was used in this case, the waves are seen to re-enter the right side of the domain. 
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Figure 3.27: A surface-trapped vortex (^i = -.7exp(-(^r)2), and ip2 = 0) over 
a moderate slope (A = 1.8) with r0 = 2.5A. The surface PV contour intervals are 
C.I. = ±[5:5: 50]; the bottom PV CI= ±[.3 .9 1.5 2.1 2.7]; the streamfunction 
C.I. = ±[.05 .1 : .1 : 1]. The axes have been adjusted in the bottom row for 
details. 
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energy locally, but serve to redistribute that energy laterally. In the slope case, 

the radiating modes are bottom-intensified topographic waves which one expects 

will be eventually damped by bottom drag. 

The parameter which determines whether the deep flow is "local" or radiating 

is idjpT*; as in the barotropic cases of Chapter 3. The difficulty in this case is that 

Ui = 0 initially, complicating the a priori determination of radiation. However, 

the deep velocities in this case are comparable to the initial surface velocities, due 

to the large size of the vortex and thus the large amount of available potential 

energy. Thus 2<^mr° « 3.6. Given the previous results, one expects waves to 

dominate at depth, and hence the instability is primarily radiating. 

This case illustrates that understanding the evolution requires knowledge of 

two parameters, A and 02 = 2djpT°. This slope was termed "moderate" above 

because it was weak enough to permit instability (A > 1), but strong enough to 

inhibit vortex motion at depth (/Ö2 > 1). A weaker slope (not shown) also permits 

instability, but is less inclined to radiation of perturbation energy at depth and 

thus more closely resembles the flat bottom case. 

A case with a larger slope is shown in figure (3.28). Here A = .18, and the 

vortex appears to be stable. Some wave energy is radiated as the vortex adjusts 

to axisymmetry from its initial perturbed state, but thereafter remains circular. 

Plots at later times reveal the vortex does not change, and no further energy is 

lost to waves. A sponge was used in this run, so the waves generated initially do 

not re-enter the domain and perturb the vortex further. The radiation of waves 

during the initial adjustment is explained in Chapter 4; unsteady surface motion 

implies interfacial motion, which must be accompanied by motion at depth. But 

as the sponge absorbs the waves, the vortex is able to achieve a steady state which 

does not require motion at depth. 

Another run, in which the sponge was not used, is shown in figure (3.29). 

In this case the perturbation-generated waves re-enter the domain and disturb 
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Figure 3.28: A surface-trapped vortex (V>i = -.7ezp(-(^-)2), and T/>2 = 0) over 
a strong slope (A = .18) with r0 = 2.5A. The surface PV contour intervals are 
C.I. = ±[5:5: 50]; the bottom PV CI= ±[.3 .9 1.5 2.1 2.7]; the upper layer 
streamfunction C.I. = ±[.05 .1 : .1 : 1] and the lower layer contours are one- 
fifth those, due to the weak flow at depth. The axes have been expanded in the 
bottom row for detail. 
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the vortex. Thus more potential energy is lost to the waves, and the k = 0 

mode intensifies. However, less potential energy is lost than in the A = 1.8 case, 

suggesting the release of APE is bounded. The late stages are characterized by a 

vortex embedded in a zonal jet of a comparable width, with the vortex elongated 

in the direction of the jet. Jets and zonally-elongated vortices are also found in 

the case of evolving surface-trapped geostrophic turbulence over a slope (chapter 

4). The case is mentioned here only to illustrate the potential growth of the 

k = 0 mode in a re-entrant domain, a fact anticipated in the discussion of the 

parallel flow above. 

The effect of increasing A is illustrated in figure 3.30. The plot shows potential 

energy and the centroid wavenumber of the surface potential vorticity. The latter, 

a mean wavenumber, resembles the barotropic vorticity centroid of McWilliams 

(1984) and is defined as: 

u  _StSi4MM)|a, ,,,,, 
^=E.EI|«MI")- {    ] 

Since the waves have zero surface PV, fxqi only reflects the mean scale of the 

surface vortices and filaments. When A is large, the potential energy decreases 

rapidly while fiqi increases. The latter asymptotes to the deformation wavenum- 

ber, vF — 6 where it remains thereafter. In the A = 1.8 case there is overshoot, 

consistent with the "turbulent" evolution observed in the moderate slope case 

(figure (3.27)). But as noted above, the release of potential energy in this case is 

nearly the same as in the flat bottom case. 

With smaller values of A, less potential energy is lost and the surface scale does 

not decrease to deformation scale. In the intermediate cases, the surface vortex is 

deformed by the initial perturbation, but relaxes thereafter toward axisymmetry 
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Figure 3.29: A surface-trapped vortex [ipi = — .7exp(—(^r)2), and ^ = 0) over 

a strong slope (jj- = 36) with r0 = 2.5A. The surface PV contour intervals are 
C.I. = ±[5:5: 50]; the bottom PV CI= ±[.3 .9 1.5 2.1 2.7]; the upper layer 
streamfunction C.I. = ±[.05 .1 : .1 : 1] and the lower layer contours are one-fifth 
those, due to the weak flow at depth. The axes have been shifted in the bottom 
row for detail. 
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Figure 3.30: Potential energy and the surface PV centroid for the surface-trapped 
initial vortex with 7*0 — 2.5A and various bottom slopes. The deformation 
wavenumber is 6. 
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(much like a subcritical case considered in Ikeda, 1981). The return to the initial 

scale of the surface PV is seen in particular in the A = .72 case. At the smallest 

value of A, the scale does not change appreciably, and there is no discernable loss 

of potential energy. 

As in Flierl (1988) and Helfrich and Send (1988), larger vortices are unstable 

to higher azimuthal wavenumbers. Given this, and the fact that the slope cannot 

stabilize disturbances with k = 0 (from the parallel flow discussion above), one 

suspects that larger vortices might be unstable. This is indeed the case. In 

figure (3.31), a somewhat larger vortex (r = 3.3A) is shown with A = .36. Small 

perturbations are found to grow on sides of the vortex (the cross slope flow) and 

generate similar disturbances at depth. The latter radiate quickly away, and 

so never grow to an extent to break the surface vortex up, but the edge of the 

potential vorticity breaks off into smaller filaments. Unlike the r = 2.5A case, 

potential energy is continually lost. 

The latter can be seen clearly in a plot of potential energy, shown in figure 

(3.32). The PE does decline for this vortex, and does so even more rapidly with 

a larger vortex. The upper layer scale increases initially, but then nearly returns 

to the initial scale, consistent with the idea that energy is being radiated away 

to waves without breaking up the surface vortex. 

In summary, one finds that a steeper slope tends to inhibit the baroclinic 

instability of a surface vortex. The key parameter, suggested from parallel flow 

linear instability arguments as well as from numerical runs, is A = ^-L- When 

larger than one, the growth of energy in the deep layer occurs faster than wave 

radiation and in the ensuing development the surface vortex breaks up. If A < 1, 

the loss of potential energy is inhibited. For vortices somewhat larger than defor- 

mation scale, instability can be blocked. But larger vortices which are unstable 

to higher azimuthal wavenumbers are not stabilized due to the inability of the 

slope to affect disturbances whose particle trajectories are parallel to the isobaths 
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Figure 3.31: A surface-trapped vortex with r = 3.3A and A = .36. The surface PV 
contour intervals are C.I. = ±[5:5: 50]; the bottom PV CI= ±[.3 .9 1.5 2.1 2.7]; 
the upper layer streamfunction C.I. = ±[.05 .1 : .1 : 1] and the lower layer 
contours are 1/2.5 times the latter. 
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Figure 3.32: Potential energy and the surface PV centroid for the surface-trapped 
initial vortex with various radii. 
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(perturbations with k = 0). 

In unstable cases, it was argued that —^ is important to the finite amplitude 

state obtained. For small values, the formation of baroclinic dipoles was observed, 

but at large values, the deep energy was radiated away. 

3.5    Discussion 

The evolution of a single vortex depends strongly on two parameters:   _ Ü2 a = 
P2dimrQ 

l//?2 and A = ~ß^- They indicate the strength of the advection of relative 

vorticity and stretching respectively; if either is greater than one, nonlinearity is 

likely to be important at depth. If fe^ra > 1 (/?2 < 1), the lower portion of an 

initially barotropic vortex remains coherent, and able to couple with the surface 

portion; otherwise, the deep flow is wave-like. If A < 1, the deep flow beneath a 

surface vortex is also wave-like which inhibits baroclinic instability. 

A unique aspect of /-plane flow over a topographic slope is that there is no 

wave dispersion of surface PV. Thus if a flow has PV at the surface initially, it will 

retain that PV after radiation of topographic waves. Of course the surface PV 

may evolve due to advection by the waves, but it nevertheless remains "local". 

The planetary and topographic ß cases agree best in the lower layer, where 

the PV gradient exists in both cases. The only case in which there is com- 

plete agreement is when the initial vortex is barotropic, larger than deformation 

scale (r0 > A), and the slope is very weak (ß2 <C 1). Then the vortex re- 

mains barotropic and translates meridionally or cross-isobaths. In a sense, the 

barotropic case predicts the fate of the vortex when ß2 > 1 and r0 > A in that 

most of the surface streamfunction is lost to wave radiation. However, the choice 

of an initially barotropic vortex optimizes the comparison; a vortex with weaker 

deep flow, such as oceanic rings are known to have, would radiate away less of 

the surface vortex over a steep slope. Ultimately, as the surface potential vortic- 
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ity dynamics are not captured, the single layer simplification fails to capture the 

whole evolution. 

One can find approximate values for the two-layer parameters from values of 

the deformation radii, velocities and bottom slopes given in some observational 

and modeling papers. This is done with the caveat that oceanic depth changes 

are probably too large to be strictly consistent with QG. 

Given the estimates of velocities for warm core ring 82B prior to its inter- 

section with topography (Joyce, 1983) and from stratification in Olson et al. 

(1985): 

0i « 1.0m/s U2 « .05m/s f « 10"4 g' « Q.0lm2/s Hy » 0.025, 

r-o « 50,000m ß2 = IM- » (10"4
n

/l)(-°25) = 1.2&XIV*Ima . 
H2 2000?n 

This leads to estimates of the two values: 

—^«0.008  ,   A «0.4. 

Warm core ring 82B appears thus to be unlikely to translate barotropically over 

topography as a Case A vortex. It also appears that it will be stable after radia- 

tion of topographic waves (which will decrease U\ somewhat), so that the Case D 

seems a reasonable expectation. The smallness of both parameters suggests open 

PV contours at depth, and linear dynamics there. A similar example was the 

cold core ring observed by Cheney and Richardson (1976). The vortex, known to 

have non-zero flow as deep as 2000m, crossed the Blake escapment on its journey 

to the southwest. This feature rises to only 1000m below the surface, and so is 

likely a "strong slope". Interestingly, the vortex continued on its original path, 

moving right over the escarpment. Cheney and Richardson found that the de- 

cay of the ring accelerated drastically as the vortex passed over the escarpment 

(see their figure 7), consistent with a weakening of the surface streamfunction. 
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Of course, the topography in that case was hardly consistent with QG, but the 

changes were consistent with a stable (Case D) evolution outlined here. 

Agulhas eddies migrate to the northwest across the South Atlantic, and must 

pass over steep topography such as the Walvis ridge on their way. Values for 

vortex scale and velocity and the Walvis ridge are given in Kamenkovich et al. 

(1996) and Clement and Gordon (1995): 

U2 H2U2 (4000)(.l) 
-.032 

ß2rl      fdyHrl      (10-4)(.0125)(1010) 

and 

fü, „   10-4(-5)   _ 

g'Hy ~ (.04).0125      ' 

so that, apparently, the Agulhas eddy will be undeformed and stable as well 

over the Walvis ridge, i.e. also as in Case D. Kamenkovich et al. (1996) varied 

the strength of the deep flow so that .05 < \U2\ < .35 which leads to a range 

of /?2 parameters from .016 to .112, all of which are in the steep slope range. 

Interestingly, they noted that the (model) eddy was found to stall over the ridge 

in the case of the strongest deep flow, and was "practically destroyed before 

reaching the axis of the ridge". Given the results of Case D, one might guess that, 

due to the nearly barotropic initial profile, topographic wave radiation carried 

off a significant portion of the surface streamfunction. Indeed, the vortex ijj\ is 

very weak in their figure (16) after impacting the ridge.   One might speculate 

further that the loss of if>i would impair the translation on the planetary /?-plane 

by inhibiting the maintenance of the "/3-gyres", producing the "stall" seen there 

and in observations (VanBallegooyen et al., 1994).   Further details about the 

inclusion of the planetary ß effect are given in Chapter 5. 

Lastly, the Smith and O'Brien (1983) study of Loop Current Eddies impacting 

the slope in the Gulf of Mexico employed layer-trapped and barotropic vortices, 

as I have in this chapter. Representative velocities and scales yield the following 

parameters: 
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U2   _     H2U2     _ (3000)(.5) 
2 ~ 

ß2r\      f dyH L2      (10-4)(.01)(50000) 

for the barotropic and bottom-trapped vortex, and 

A _ IEL ~ 1Q-4(-5) - 20 
A - g'Hy ~ (.025).01 ~ ^ 

for all vortices. Again the vortices (approximately deformation scale) appear 

to fall into the stable, large slope category, although the ß2 parameter is the 

largest of the examples considered, suggesting that the barotropic vortex might be 

significantly deformed during wave radiation. The occurrence of closed contours 

of bottom potential vorticity in their figure 7 is consistent with this, but it is 

difficult to say whether the surface vortex has been deformed by waves or is 

interacting with the edge of their domain. 

A recent observational study of a Loop current eddy (Vidal et al., 1992) 

witnessed its impact on the continental slope. A primary finding was that the 

vortex lost about | of its "mass" on impact, but remained in tact. This obviously 

fits with the steep slope scenario detailed in the chapter. Because the surface 

vortex was weakened, one can deduce that it had a significant deep flow prior to 

impact. 

The results may also suggest the reason the laboratory experiments of Mory 

et al. (1987) and Whitehead et al. (1990) disagreed. Both examined vortices 

formed by the convection of dense fluid onto a sloping shelf. In the Mory study, 

a nearly barotropic cyclonic vortex formed above the dense fluid and the vortex 

migrated slowly to the northwest. Whitehead et al. on the other hand found 

a surface-intensified cyclonic vortex over the dense fluid, one which drifted due 

west at a speed which agreed with the predictions of Nof (1983). The "lower 

layer" in both cases is completely contained in the vortex (the dense water at the 

base of the vortex), so applying the QG results of this chapter is questionable 
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at best, nevertheless the cyclonic circulation experiences the slope PV gradient, 

so it is reasonable to ask how large yö is. This can be done approximately given 

their experimental parameters, and taking the water depth to be that of the tank 

and the swirl velocities at the surface. One obtains (quantities shown are in cgs 

units): 

a     fHyrl „ (2)(.14)(3.5)2 

HU (25)(.5) 

fHyrl ^ (-83)(.2)(5)2 

= .27   (Merry et al, 1987), 

.62   (Whitehead et al, 1990), 
HU (13)(.5) 

so that the effective slope in the Whitehead et al. case more than two times 

larger than in the Mory et al. case. Of course, both estimates are less than one, 

however they are near enough to one that they ought to fall in the "transition" 

region (and slightly smaller estimates of velocity or larger radii would shift the 

slopes closer to unity). The Whitehead et al. slope might actually be larger 

because the observed surface speeds would be representative post-wave radiation 

flow. 

Whitehead et al. demonstrated that the vortex flow at the bottom was about 

zero, so their vortex was compensated. And the vortex in figure 3c of Mory et 

al. (1987) has a trailing wake of smaller vortices, as in figure 4 of the barotropic 

experiment of Carnevale et al. (1991a). The picture is more complicated than 

suggested here, because of the effect of gravity on the deep fluid (Nof, 1983), but 

the observed baroclinicity is consistent with the results of this chapter. 

In the numerical experiments discussed, the deep flow was so weak that the 

lower portion of the vortex should have radiated away as waves. As seen in cases 

C and D, when this occurs the vortex is unable to self-advect over topography. 

The expectation that the vortex will migrate in a direction which is the weighted 

average of the topographic and actual northwest (expressed in figure 3 of Smith 

and O'Brien 1983) is thus incorrect.   Rather, the vortex simply loses its lower 
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half, only continuing to move if the surface vortex is able to generate (planetary) 

/3-gyres, or if the surface vortex is moving under the influence of an ambient flow. 

Saying whether rings move under the influence of a mean flow or the planetary 

/3-effect is beyond the scope of this work. It appears that the mechanism likely 

depends on the local flow. Joyce and Kennelly (1985) contended that Warm Core 

ring 82B was simply advected by the background flow when over the continental 

slope. However, the results of Cornillion et al. (1989) clearly suggest translation 

of the ring at a velocity different from that of the slope flow, at least away from the 

shelf. It should be noted that mean advection rather than topographic translation 

might explain why anticyclonic Warm core rings migrate to the topographic west, 

whereas anticyclonic Loop current eddies drift to the topographic east. Agulhas 

eddies on the other hand experience weaker mean flows translating across the 

South Atlantic, and appear to move at a speed and in a direction compatible 

with /3-induced translation (Clement and Gordon, 1995). 

A final point concerns the question of whether a surface vortex which is off- 

shore of the continental shelf could move onto the shelf. The answer appears to 

be that the topography may not prevent it from doing so, but that the vortex will 

be unable to self-propel across. In variable regions such as the California coast, 

interactions with other vortices could advect a vortex up over the topography 

after radiation of the deep flow. A striking example of an eddy on the shelf is the 

45 km radius anticyclone described by Washburn et al. (1993) which moved on 

to the Northern California shelf/slope and stayed there for two months, drawing 

tons of sediment off the shelf. In fact, Largier et al. (1993) contend that offshore 

eddies may be responsible for a sizable portion of the shelf variability in this 

region. Vortex interactions over topography are considered in more depth in the 

following chapter. 
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Appendix A: Non-isolated Vortex 

In the following a non-isolated vortex over a topographic slope is considered. 

The primary motivation is to identify elements in chapter 3 which depend solely 

on vortex isolation. However, the work is also intended as a baroclinic extention 

of the barotropic laboratory study of Carnevale et al., (1991a). 

A non-isolated vortex has a non-zero circulation and thus a slowly-decaying 

velocity field, with ^..„„«(r) a K The wider field of influence increases the 

likelihood of boundary effects. Indeed Carnevale et al. (1991a) attributed the 

arcing trajectory of their laboratory non-isolated vortex to the influence of the 

boundary. 

The following is divided into subsections. In the first, the effect of confin- 

ing the vortex to a doubly periodic domain is discussed. In the second, a ß- 

dependence of the translation velocity in the barotropic case is sought. In the 

third, the non-isolated vortex in two layers over a weak slope is examined. One 

finds the twisting instability is absent in this case so that even small barotropic 

vortices translate vertically aligned. In the fourth, the evolution over a large 

slope is briefly discussed, and isolation is found to be unimportant. Finally, the 

translation of a surface-trapped potential vortex over a slope is discussed. This 

last category is provided for comparison with a recent study by Pankratov (1994) 

of a point potential vortex over a slope. 

Initial condition 

The vortex has a Gaussian vorticity profile, i.e. ( = V y = Ae Kro' , and 

is shown in figure (3.33). Different parameter values were used, but the vortex 

always had a maximum swirl speed of roughly one. A typical example is shown 

in figure (3.33). 

A difficulty with confining such a vortex to a doubly periodic domain is that 

the total circulation in the domain must be zero, as noted by Mariotti et al. 
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(1994). This can be seen in the area-average of the Fourier expansion of vorticity: 

r i\2i>dxdy= r /w E E -*2M iykx+ily dx dv = -(°) w, o=° 
Jo    Jo Jo    Jo      k     i 

(3.35) 

In practice, the model effectively adds a background vorticity equal (and op- 

posite) to the domain average circulation of the vortex. The result is that the 

azimuthal velocity decays to zero at the edge of the domain, as one expects from 

Gauss's Theorem, so the far-field velocity is truncated. The dotted line in the 

bottom panel of (figure (3.33)) is the actual velocity of a Gaussian vortex: 

v(r)=^(l-e-W) (3.36) 

The model and actual profiles agree except in the outer region where the 

model velocity falls off too rapidly. In their study of a non-isolated vortex ex- 

posed to shear, Mariotti et al. (1994) chose to add negative vorticity to the 

boundary to balance the circulation of the vortex. In comparing results to a sim- 

ilar contour dynamical simulation, they claimed that the effect of the additional 

vorticity was weak. I have chosen not to add such a boundary layer of vorticity, 

but rather to use smaller vortices, as the velocity scales as r*. The hope is that 

the local interactions between surface and bottom vortices and with waves will be 

captured. Carnevale et al. (1991a) found qualitative agreement between the lab- 

oratory vortex and a numerical vortex in a doubly periodic domain. Althought 

the total circulation will be zero in a laboratory tank as well if the no-slip con- 

dition applies, the agreement with two different sized domains is reassuring. 
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Figure 3.33: The initial vortex. The streamfunction (top) has contour interval 
C.I. = -[.1 : .1 : 1] and the vorticity (middle) C.I. = [1 , 5 , 9 , 13 , 17]. The 
bottom panel shows the azimuthal velocity on a doubly periodic domain (solid) 
and the analytical velocity (dotted). The bold contours are negative values, the 
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One layer 

As in the isolated vortex case, the vortex was found to accelerate to an ap- 

proximately constant translation velocity. However, the translational velocity 

was found to be more rapid and the trajectory arcing from northwest to nearly 

westward in many cases. An example is shown in figure (3.34). The evolution is 

qualitatively consistent with that of Carnevale et al. (1991a), and the vorticity 

in figure (3.34) closely resembles their figure (3a). 

As in Chapter 3, one can seek the ß- dependence of the translation velocity 

for this vortex as well. Several single layer runs were made and the translation 

velocity was obtained by approximate linear fits of the centroid position in time. 

The results, shown in figure (3.35), indicate that \u\a ß-85. Furthermore, in the 

small ß limit, the dependence appears to be approximately linear. Similar tests 

with different sized vortices indicate almost no dependence on vortex scale. 

These results may be understood by appealing to the asymmetric streamfunc- 

tion (defined in Chapter 3) shown in figure (3.34). One sees that the advecting 

gyres are domain-filling. The gyres appear to intensify, fill the domain, then prop- 

agate westward as Rossby waves, carrying the vortex along with them. Moreover, 

this type of evolution was observed with all vortices which could be resolved by 

the model; in each case, the vortex was advected by domain-filling waves. The 

response then is apparently a consequence of the larger horizontal scale of the 

velocity field. 

If the vortex is transported by a large-scale wave field, then the dependence of 

that velocity on ß and r makes more sense. The dependence on ß probably only 

reflects the linear dependence of the wave phase speed on ß. The approximate 

independence on r could be explained by noting that L, the size of the domain, 

may be the important length scale. Perhaps the efficiency of vortex propulsion by 

the wave should vary somewhat with vortex size, but it appears, to first order at 

least, that the variation is weak. Of course, if the domain were much larger, one 
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Figure 3.34: In the upper panel, the vorticity for a non-isolated vortex with 

^ = .01 at t = 20. The CI = [.25 .5 1 2.5 5 10]. The centroid position is 
drawn every two time units. The asymmetric streamfunction at t = 20 is below. 
The actual streamfunction is superimposed (dashed). The CI = ±[1 : 1 : 10]/25 
(asymmetric field) and CI = ±[1 : 1 : 10]/5 (streamfunction). 
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Figure 3.35: The translation velocity of the non-isolated vortex as a func- 
tion of ß (top panel) and vortex e-folding radius (bottom). The veloc- 
ity was determined by linear fits to the vortex position in time; the error 
bars are from the fits. The vortex amplitudes and radii were (A,ro) = 
(7, .45) , (11,.3) , (14, .225) , (21,.15) , (42, .075). The last vortex was used 
for the upper cases. 
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might expect variations with vortex size, but computational constraints limited 

the range of accessible vortex sizes. 

Therefore, the barotropic non-isolated vortex translates in this doubly peri- 

odic model by exciting domain-filling Rossby waves. Carnevale et al. (1991a) 

postulated that the arcing trajectory of the non-isolated vortex in the lab was 

due to boundary influences so the present findings are then consistent with that 

notion. 

Two layers, weak slope 

Two layer, non-isolated barotropic vortices were considered as in cases A 

and B in chapter 3. The slope again was weak, ^p- « .009 (although this 

value may be misleading due to the large scale velocity field). Several different 

vortices were allowed to evolve from rest over the slope, and the trajectories 

of the upper and lower potential vorticity centroids are shown in figure (3.36). 

Of interest is the fact that the vortices shown are all smaller than deformation 

scale, but are nevertheless translating vertically aligned. As noted above, the 

radius to the velocity maximum tends to underestimate the scale of the non- 

isolated vortex, but even taking three times r0 would yield sub-deformation scale 

vortices. The trajectories all closely resemble that found in the one-layer case, 

and are consistent with trajectories obtained in the laboratory (Carnevale et al., 

1991). 

As explained by Flierl (1988), the twisting instability requires vortex iso- 

lation. The outer ring of oppositely-signed vorticity permits the formation of 

layer-trapped dipoles and in turn the separation of the upper and lower vortices. 

Without the ring of negative vorticity, the upper and lower vortices will sim- 

ply co-rotate with a frequency which varies with the separation of their centers. 

This can be seen approximately by inverting the potential vorticity of one of the 

layer-trapped potential vortices to find the streamfunction in the other layer, i.e. 

120 



r0 = .32 X r0 = .23 X 
3 3 

2 

1 

»                                      ®% 2 
%fc                                 "% 

>>  0 ^\ >>  0 ^fc 

-1 -1 

-2 -2 

-3 -3 
-2                 0                 2 

X 
-2                  0                  2 

X 

r0 = .16 X r0 = .16 X : hyperviscous 
3 

2 
*W                                ** 

3 

2 X 
>> 0 "X 1 

>• 0 
\-\ 

-2 

-1 

-2 ■ 

-3 -3 
-2                 0                 2 

X 
-2                  0                  2 

X 

Figure 3.36:   The positions of the potential vorticity centroids, as defined in 

chapter 3, for non-isolated vortices of varying scale with ^ = .002. The (o) is 
the upper potential vortex and the (x) is the lower vortex. The lower right panel 
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the flow responsible for advecting the other vortex. For simplicity, assume that 

the vortex profile is fixed, i.e. undeformed by the other vortex, and confined to 
/ r_2\ 

the upper layer. Then if qx = AeK  ro ; and q2 = 0, the corresponding barotropic 

vorticity (e.g. Hogg and Stommel, 1985) is: 

qBT = S7
2
0>BT) = V2(^i + $2) = Ae{  -o2) (3.37) 

and the baroclinic vorticity is: 

qBc = (V2 - 2 F){ij>Bc) = (V2 - 2 F)(V>i - rf>2) = Aexp{--).        (3.38) 
To 

Equations (3.37) and (3.38) can be inverted with the Green's functions corre- 

sponding to the v2 and the SJ2 — 2 F operators in two dimensions: 

1      /-2ir     z-oo j.12 

TI>BT(T) = /     /    Aexp( )log(r-r')r'dr'd6' (3.39) 
7T JO      JO Tn 

and 

rl>Bc(r) = /      /    Aexp( )K0(V2F(r - r'))r'dr'd6' (3.40) 
7T Jo      Jo Tn 
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where KQ is a modified Bessel function. The streamfunction in the upper/lower 

layer is half the sum/difference of (3.39) and (3.40), and the azimuthal velocity 

in layer two is the radial derivative, dTiß: 

vi(r)/v2(r) = ~— /    Aexp( )( -±K1(V2F(r-r'))cos(a(r,r',6')ydr'd6' 
Z7T JO      JO 7"o        T — r 

(3.41) 

where cos(a) = rqf^r results from the projection onto the azimuthal velocity (the 

radial velocity is identically zero), and where K\ is the modified Bessel function 

of first order. Equation (3.41) was solved by integrating numerically using a two- 

dimensional trapezoidal rule. The velocity for a vortex with the same amplitude 

and radius as those in the figure (3.36) calculations is shown in figure(3.37). The 

solutions asymptotically approach point potential vortex solutions (e.g. Hogg 

and Stommel, 1985) as r/ro —* oo due to the non-zero circulation, T = ir A r%. 

Unlike in a point vortex solution, the velocity is bounded at r = 0. 

If the upper and lower portions of the barotropic vortex become displaced by a 

distance r, they will advect one another with a velocity t^7*)- Two characteristics 

of this velocity are evident in figure (3.37): for larger vortices, the flow is stronger 

and the radius of maximum velocity closer to the center of the vortex. Under the 

influence of a vertically sheared impulse, the upper and lower potential vortices 

will experience less horizontal separation if they are large. Smaller vortices will 

separate more, but the azimuthal velocity is non-zero even when the vortices are 

smaller than deformation scale, so such vortices may translate aligned. 

In the topographic case, the initially barotropic vortex perturbs bottom- 

intensified /32-gyres which are more bottom-trapped when the vortex is small. 

However, the shear is too weak to separate the vortices in the cases shown in 
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r/X=1.5 

Figure 3.37: The azimuthal velocity field of a surface Gaussian potential vortex 
vs. distance from the vortex center. The vortex parameters are the same as those 
in the simulations, i.e. A = 21 and RQ = .15. The upper layer velocity is shown 
at top and the lower layer velocity at bottom. 
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figure (3.36). On close inspection, the small vortex trajectories in figure (3.36) 

are found to be misaligned, and weakly co-rotating. One expects that a much 

smaller vortex will separate, when the co-rotating flow is much weaker. 

If the vortex is larger than deformation scale, then the surface and bottom 

vortices would deform significantly if laterally separated, and would "align" as 

discussed by Polvani et al. (1994). Thus using a fixed PV profile to derive the 

velocity in the opposite layer would be inappropriate. But alignment ceases to 

occur at scales smaller than the deformation radius, so cohesion due to co-rotation 

is the dominant effect. 

Interestingly, under hyperviscous damping the sub-deformation scale vortex 

ceases to translate aligned. The centroid trajectories for such a case are shown 

in the final panel of figure (3.36). Unlike the filtered case, the upper and lower 

vortices rapidly separate. This is a result of the formation of a weak negative ring 

of vorticity around the vortex, a Gibbs effect from the hyperviscous damping as 

described in Chapter 2. The rings are quite weak in this case, but nonetheless 

strong enough to couple with the primary vortices and cause separation. This 

case suggests that the twisting instability can occur even when the vortices are 

only weakly shielded, and that sub-deformation scale barotropic vortices are un- 

likely to be found in nature. 

Non-isolated barotropic vortices over a large slope 

The evolution in the case when ß2r\ > U2 = U\ is essentially the same as 

in the isolated case. An example with a vortex with r0 = 1.8A and ^°- = 18 is 

shown in figure (3.38), and may be compared to figure(3.20). As in the isolated 

cases, the portion of the vortex projecting onto the topographic waves radiates 

away leaving the surface potential vorticity unperturbed. As in case D in Chap- 

ter 3, the radiating waves are nearly barotropic so that surface streamfunction 

which remains is substantially weakened. 
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A surface-trapped non-isolated vortex 

A vortex which has non-zero potential vorticity only in the surface layer (a 

surface potential vortex in the language of chapter 3) is an interesting special 

case because the contours of total potential vorticity at depth are open initially. 

In other words, the relative vorticity and stretching cancel one another, and thus 

do not deflect contours. At first glance one might expect a linear evolution. 

However, as there is non-zero flow at depth, waves will be generated and the 

vortex vertical structure must evolve. Over a flat bottom, a surface potential 

vortex is baroclinically stable because there is no change in sign of PV in the 

vertical (Flierl, 1988). But over a slope, the deep flow can be lost, potentially 

allowing instability. 

The azimuthal velocities in both layers are shown in figure (3.37). The vortices 

larger than deformation scale are more nearly barotropic, and the smaller vortices 

have weaker deep flow. From this alone, one expects that smaller vortices are 

more prone to radiation of their deep flow since ß2 is larger. They will therefore 

come to rest sooner than would a large vortex. 

Surface-trapped potential vortices were allowed to evolve over a weak slope, 

and the tracks are shown in figure (3.39). The vortex amplitudes were adjusted so 

that the maximum surface velocity was 1.0 in all cases. Translation is more rapid 

for the larger vortices, and is comparable to the barotropic case in magnitude 

and direction. The small vortices on the other hand undergo a small cross-slope 

migration, with an unsteady and vanishing velocity. 

Pankratov (1994) studied a freely evolving surface potential vortex with con- 

tinuous stratification and a slope. The density contours on the slope were mod- 

elled via a modified contour dynamics scheme, and were coupled to the velocity 

field of the surface vortex7. The density contours were assumed to be only weakly 

7Inherent in Pankratov's formulation was the fact that a surface vortex would conserve its 
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perturbed by the vortex. 

Of interest was that he found eastward motion of the vortex over the slope. 

In all cases above, as well as in all cases in chapter 3, the vortices always moved 

westward. Pankratov explained the motion by saying that the gyre to the west 

of the vortex was radiated away while that to the east remained and coupled 

with the surface vortex in such a way to yield steady northeastward transla- 

tion. The present results suggest that vortices with strong deep flow couple to 

the large scale wave field as do barotropic vortices and thereby move westward. 

Small vortices suffer radiation of the advecting gyres, but then stall. Pankra- 

tov maintained that the motion depended on continuous stratification and thus 

not captured in a layer model. One expects that both approaches should yield 

westward drifts with vanishing stratification, but perhaps differences are found 

with strong stratification (small vortices). The answer awaits a study in another 

continuously stratified model. 

In summary, the non-isolated vortex differs from the zero circulation vortex in 

two principal ways: in the larger extent of its velocity field and in its immunity 

to the twisting instability. The consequence of the former is that the transla- 

tion velocity is found to be approximately independent of vortex size since the 

advecting gyres fill the domain. The vortex stability permits vertically aligned 

translation of sub-deformation scale barotropic vortices. However, the far field 

velocity of the non-isolated vortex is found to be truncated in a doubly-periodic 

model, and as such the results may disagree with predictions for a vortex on an 

infinite domain. 

potential vorticity on the /-plane. Thus he assumed the point which was exploited in Chapter 
3 to predict the final streamfunction in the strong slope cases. 
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Chapter 4 

Geostrophic turbulence over a 

slope 

Previously, it was found that the two lower layer advective parameters, -Jr^ and 

A = ^r^ dictated the character of the single vortex evolution. The barotropic 

vortex became baroclinic when the former parameter was less than unity, and 

large surface vortices were baroclinically stable if the second was less than one. 

In the large slope cases, the upper vortex was found to be steady as it was 

unperturbed by the rapid waves and was stable. 

A turbulent flow, in contrast, is not steady as vortices continually merge and 

shear one another apart. Neither are the scales of motion in freely evolving 

turbulence fixed, but are continually increasing. So it is reasonable to wonder 

whether the previous results carry over to this case. It will be seen that the 

basic ideas do carry over, with the exception that the slope is no longer able to 

stabilize the surface flow. In that case, however, A determines the rate at which 

available potential energy is lost. 

In addition, the specific impact of the slope on the spectral cascade is of 

interest. As noted in Chapter one, ß has a significant impact on two-dimensional 

turbulence as the inverse cascade of energy is arrested when turbulent vortices 
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disperse into Rossby waves.    Determining whether such an arrest occurs and 

where is one of the goals of this chapter. 

The chapter organization is as follows. A short section reviewing relevant as- 

pects of cascading barotropic turbulence is given, and then the initial conditions 

in the slope case are discussed. The slope results are presented by looking in 

detail at a case in which the slope is "weak" (in a sense to be explained) and 

then at one in which it is "strong". Comparisons to a two layer run with a flat 

bottom and a run with a motionless lower layer are shown for comparison. Fi- 

nally, a brief appendix is included in which similar results are obtained with only 

a bottom Ekman layer. 

4.1     Background: Barotropic turbulence 

As mentioned in Chapter 1, a singular and important aspect of two-dimensional 

turbulence is that energy cascades from small to large scales, the so-called "in- 

verse cascade" of energy. In a numerical experiment, a finite domain is the only 

impediment to even larger scale motion. This tendency towards domain-filling 

motion can be seen in the streamfunction fields shown in figure (4.1). The initial 

flow, with energy sharply peaked at wavenumber 14 (see below), evolves to a field 

of eddies which span the doubly-periodic domain. 

A second relevant point is that enstrophy or squared vorticity cascades to 

smaller scales where it is dissipated, here, by the numerical filter described in 

Chapter 2. What typically remains are the strongest maxima present in the 

initial vorticity field. These vortices last for many eddy turnover times and 

merge with like-sign features to produce larger (area) vortices. As suggested by 

McWilliams (1984), the forward enstrophy cascade is prevented in the interior of 

the vortices as vorticity there essentially is unable to be sheared out. The vortices 
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Figure 4.1: The streamfunction (left) and vorticity (right) fields for a barotropic 
turbulent run with ß = 0. The initial fields are at the top, the late 
fields (i = 40) at the bottom. The streamfunction contour values were 
±[.05 .2 .5 11.5 2], the initial vorticity contour values ±[60 100] and the late con- 
tour values ±[15 30 60100150]. 
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dominate the dynamics after the bulk of the enstrophy has been dissipated, here 

about 5 eddy turnover times. 

The barotropic evolution in the presence of a /3-effect is different, as illustrated 

first by Rhines (1975). As seen in figure (4.2), the streamfunction also evolves to 

larger scales, but the late flow is anisotropic and not domain-filling. As argued 

by Rhines, when the motion reaches a certain scale, the dynamics are dominated 

by Rossby waves which are less efficient at transferring energy. This arrest scale 

is predicted by a simple scaling. The barotropic vorticity equation is: 

I- v21> + W, VV) + ß^ = 0 • (4.1) 
Ol Ox 

If the ß term is assumed order one, the advective term has a scale -^. This is the 

inverse of the nondimensional ß discussed in Chapter 3. If the scale of motion is 

small, advection dominates and the cascade proceeds as if in the absence of ß. But 

when L « Lß = jW,1 advection and the ß term are comparable and transfers 

are found to slow greatly. Though Rhines' argument is essentially isotropic, the 

resulting flow is generally anisotropic. This can be related to the anisotropy 

of the Rossby dispersion relation, i.e. to the fact that the wave frequency is 

proportional to the zonal wavenumber (see Vallis and Maltrud, 1994). The zonal 

scale exceeds the meridional scale, and the latter is of the same order of magnitude 

as the (isotropic) arrest scale. 

One also finds that the coherent vortices disperse when the cascade arrests. 

As a result, the late vorticity field in figure (4.2) is essentially devoid of closed 

contours and dominated by the mean PV gradient. Thus ß in a sense aids the 

forward cascade of enstrophy by removing the possibility that vorticity can be 

"shielded" in the interior of vortices. 

1The factor of two results from the assumption of isotropy. See Rhines (1975). 
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Figure 4.2: The streamfunction (left) and total vorticity (right) fields for a 
barotropic turbulent run with ß = 62.5. The initial fields are at the top, the 
late fields (i = 40) at the bottom. The streamfunction contour values were 
±[.05 .2.511.52]; the vorticity contour values are drawn so that 8 contours span 
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Thus a mean potential vorticity gradient significantly alters the two-dimensional 

cascades. In a barotropic fluid, a topographic slope acts as a ß effect, and one 

thus expects an arrest with scale L w Lß = J^. This scale may be smaller 

than the planetary version because the slope can be steep (ß2 large). The PV 

gradient in the two-layer, /-plane case over a slope is confined to the lower layer. 

It is as if the two barotropic cases discussed above were stacked vertically. If the 

interface between the two layers was rigid, one would find the same evolutions. 

However, the interface can move, so the cascades will be coupled, and outcome 

is less obvious. 

4.2    Initial conditions 

As before, one must specify the initial vertical distribution of energy. Rhines 

(1977) considered surface-trapped, small-scale turbulence when examining the 

cascade of baroclinic energy towards the deformation radius. McWilliams (1990b) 

on the other hand chose an initial spectrum which filled his continuously stratified 

domain, leading to baroclinic cascades on multiple levels. I have chosen an initial 

flow which resembles Rhines's: a surface-trapped streamfunction field with a peak 

scale smaller than the deformation radius. This facilitates observing the spin-up 

of the lower layer, or the "barotropic cascade" in Rhines's terminology. 

The initial surface kinetic energy spectrum used is shown in figure 4.3, and is 

given by: 

0 if K < «o 

i.    (K+KO)
18 —     u 

The coefficient KE0i is determined by the normalization: 

KE^K) = < 

\ I ful + vi dxdy ^EE^OO = |££«2hM2 = es.     (4.2) 
z J J z   k    1 A  k    1 
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The normalization constant chosen yields a rms surface velocity of one. The steep 

spectral tail is the same used in the barotropic study of McWilliams (1990a).2. 

The sharp tail was chosen to minimize energy lost immediatedly to the numerical 

filter (chapter 2), which in turn permitted taking larger values of /c0 and y/F. 

The vortices which emerge tend to be comparatively uniform in size and strength 

(McWilliams 1990a), a fact which was of little importance in what follows. 

The number of vortices which emerge depends on the resolution, because 

higher resolution allows decreased lateral damping which, in turn, preserves more 

small vortices (Benzi et al., 1986). Finer grids also means better resolution of the 

initial vorticity gradients and thus stronger vortices. Because stronger vortices 

are more resistant to shear (Mariotti et al., 1994), this too increases the vortex 

population. The main runs discussed below were made with 2562 grid points, 

which was sufficient to capture the qualitative vortex dynamics. The small time 

step required for the large slopes essentially prohibited finer resolution with the 

computers available. Supplementary runs with coarser resolution were made 

when longer integrations were required, and for the Ekman cases in Appendix B. 

The removal of the long wave portion of the spectrum yields a distribution 

resembling the "classical" initial spectra used by Rhines (1975), Shepherd (1987) 

and others. This choice simply aids in observing the changes at the deformation 

radius. 

The dash-dot line in figure 4.3 is the resulting potential energy if the deforma- 

tion wavenumber is 10, the latter indicated in the plot (and later spectral plots) 

by the vertical dotted line. 

In chapter 3, the slope was defined to be strong when a%j < 1, but such a 

definition is useless with f/2(i = 0) = 0. An alternative is to use A = ^^ which 

is not only independent of the deep velocities, but is also approximately scale 

2Note however that observed energy spectra are thought to have a decay nearer to /c~3 

(Stammer and Boning, 1992), but barotropic turbulence calculations generally indicate steeper 
slopes, possibly due to coherent vortices (e.g. Basdevant et al, 1981; Babiano et al., 1987). 
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independent. Thus, the slope is "strong" when it is steep enough potentially to 

inhibit baroclinic instability; i.e. the weak slope case has A > 1 and the strong 

slope case has A < 1. 

4.3    Weak slope: A = 4 

In this and the following examples, the F\ — 100 so the deformation wavenumber 

is 10. This choice represents a compromise between the desire to have a large scale 

separation between deformation and domain scales (to aid observing arrests), 

with the necessity of keeping the initial scales large enough to avoid dissipation 

of a significant portion of the energy in the early stages of the integration. In 

this case, —Remain. _ 52.5, which yields a value of A ?a 4 because the maximum 

surface velocities are between 2 — 3. The strong slope case, discussed below, 

has a smaller value of A = 0.1. The present case has equal layer depths, so 

F = Fr = F2. 

4.3.1     Streamfunction and energy 

The streamfunction fields for the weak slope case are shown in figure 4.4. As in 

the previous barotropic cases, the cascade to larger scales is evident. In addition, 

one finds that the fields become more barotropic in that the larger features are 

nearly identical in the two layers. 

The barotropic cascade in two layers over a flat bottom was discussed by 

Rhines (1977) and can be inferred from the work of Charney (1971). The latter 

postulated that in a stratified quasigeostrophic flow, the cascade to larger hori- 

zontal scales will be accompanied by a cascade to larger vertical scales. Rhines 

noted that deformation-scale energy is expected to lead to layer coupling (his 

"barotropic cascade"). One finds that this occurs over the slope also in the case 
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A > 1, consistent with the notion that the slope is not blocking baroclinic insta- 

bility. However, close examination of the streamfunction fields suggests that the 

motion is ioiiorririntensified, and that there is small-scale motion at the surface 

which has no component at depth. As in the barotropic /3-plane case above, the 

late flow is found to be anisotropic and does not fill the domain, suggesting an 

arrest. 

The energy spectra are shown in (figure 4.5). The spectra have been averaged 

in wavenumber bins for smoothing, and so are isotropic. They suggest a rapid 

shift towards larger scales (smaller wavenumbers), and the peak in energies has 

moved past the deformation scale by t = 5. However, the arrest clearly ceases and 

the peak at t = 20 lies between 4 — 5. In contrast, the peak from a flat-bottom 

experiment (lower right) lies at the gravest scales at the same time. Note that 

the lower layer kinetic energy exceeds that of the upper layer at the peak, which 

is also consistent with the bottom-intensification noted above. At larger scales 

one finds that the potential energy dominates kinetic energies. In contrast, the 

flat bottom case has KEi > KE2 at large scales, and weaker potential energy at 

scales larger than the deformation radius, consistent with barotropic motion. 

In the enstrophy cascading range (from the peak wavenumber out to dissipa- 

tion range beginning at wavenumber 85), the spectral slope is nearly constant for 

the lower layer kinetic energy, but is curved for the upper layer. The presence of 

coherent vortices can lead to multiple slopes in the inertial range (e.g. Santengelo 

et al., 1989); if so, it would appear that there are coherent vortices at the surface, 

but not at depth. This is indeed the case, as shown below. The slope in both 

cases is greater than the classical value of K~
3
 (Kraichnan, 1967). 

The rate of spectral evolution can be quantified by considering spectral fluxes, 

derived in chapter 2. The barotropic and baroclinic fluxes are shown in figure 

(4.6). The fluxes for the flat bottom case are shown as well for reference. In 

the flat bottom case, one finds that there is an active transfer of energy from 
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Figure 4.4: The upper and lower layer streamfunction fields for the weak slope 
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the baroclinic to the barotropic mode at early times followed by an essentially 

barotropic flux of energy to large scales which is more episodic, but nevertheless 

extends to the largest scales. At the same time, a forward (downscale) flux 

of thickness is approximately balanced by an inverse (upscale) baroclinic self- 

advective flux, suggestive of an inverse correlation which is found in baroclinic 

instability (Pedlosky, 1987). The intermode transfer is intense early on due to 

the proximity of the initial energy peak and the deformation radius. 

The slope case differs in that the intermode transfer is greatly prolonged, and 

still evident even at t = 20. However, the flux is nearly balanced by a forward 

flux due to the topographic term, thereby returning the energy to the barotropic 

mode. Recall that the sum over all wavenumbers of the baroclinic to barotropic 

transfer and the barotropic to baroclinic transfer are equal, but that the two 

may not be equal at every wavenumber. However, the topographic transfer is 

equal at each wavenumber, so the flux due to the topographic transfer is equal 

and opposite for the two modes. As explained below, the reason for the balance 

between intermode and topographic transfers is that energy is being "taken up" 

by topographic waves, which are bottom-intensified. We see here that the balance 

occurs at all times, i.e. there is no delay in the conversion to wave energy. 

The total energy budgets also differ for the flat and sloping bottom cases, as 

shown in figure (4.7). In both cases, the upper layer kinetic energy decreases 

rapidly while the lower layer kinetic energy increases. The decrease of KE\ is a 

result of the shift to larger scales in the surface layer. With tp2 ~ 0, V2,0i must 

balance Fipi to conserve surface PV, implying KEi and PE must balance. The 

ratio PE to KE\ scales as F\L2, so an increase in scale causes a decrease in KE\. 

In the flat bottom case, PE is converted simultaneously to KE2 due to the 

conversion of baroclinic to barotropic energy. In the flat bottom case the deep 

kinetic energy does not exceed the surface kinetic energy (due to dominance of 

the surface potential vorticity, described below), but in the slope case it does, 
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indicating a greater transfer of energy from the surface to bottom layers. A 

second, subtler difference is that KEi and PE are oscillating rapidly and out of 

phase in the slope case, but not in flat bottom case. 

An interpretation which is consistent with these observations is one in which 

surface-trapped energy cascades to the deformation scale, couples with the lower 

layer, then cascades barotropically to a topographic arrest scale. The coupling 

occurs because wave radiation is too slow at deformation scale; if the perturbed 

lower layer velocities are of the same order as the surface velocities, then A > 1 

implies that U\ « U2 > j? • Secondly, if the flow is nearly barotropic, advection 

at depth is primarily advection of relative vorticity, of magnitude j-^ compared 

to /32^V72- Hence thereafter the cascade is analogous to the barotropic Rhines 

case, with an arrest occurring near K, = ^-. Moreover both barotropic and 

topographic arrests are anisotropic (Vallis and Maltrud, 1994). 

However, there are differences which make the weak slope case interesting. 

For one, the arrest scale is initially infinite because there is no flow at depth. 

Thus the arrest scale affectively "sweeps in" past the deformation scale during 

the spin-up of the lower layer. This is in strong contrast to the barotropic Rhines 

case in which the arrest scale is fixed because U is fixed by conservation of 

energy. The fact that the slope cannot block instability essentially guarantees 

that the arrest scale will move past the deformation radius; if energy becomes 

predominantly barotropic, then the mean velocity will be conserved thereafter, 

so A > 1 roughly implies that J^- f« J^ < y/F.3 During the early stages of 

the lower layer spin-up, a degree of wave radiation is expected, dependent on the 

strength of the slope. In the case considered above, wave radiation apparently 

occurs all the time as the topographic flux term is always large. 

A second fundamental difference with the barotropic case is that the waves 

3This highlights the importance of evaluating A with the surface velocity at deformation 
scale rather than at the initial time. 
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are not barotropic, but bottom-intensified. As described in chapter 3, as ^1™ = 

2XF V^tu < i}2w This has two implications. First, if the flow evolves to one 

dominated by topographic waves, the lower layer kinetic energy should exceed 

that in the upper layer, as found in figure 4.7. Secondly, as seen in chapter 

3 with an initially barotropic vortex over a slope, one expects that a surface- 

trapped component of the flow will be left behind after wave radiation. This 

portion carries the surface potential vorticity, as described in Chapter 3, since 

the topographic waves have zero surface PV. Plots of the potential vorticity fields 

confirm this, as discussed below. Note that the degree of wave baroclinicity 

depends on their scale, with large scale waves being nearly barotropic. Thus in 

the limit of vanishing slope or stratification, the arrest becomes more like the 

Rhines case. 

The shifting arrest scale obviously complicates predicting the final scale of 

motion a priori. However, an estimate can be made given this particular initial 

condition . If KE2f ~ KE\f ä! \TE0 where the latter is the total initial energy, 

then K„ « 6.4, which is somewhat larger than the observed value of \/42 + l2 = 

4.1. However, the arrest argument is an isotropic one, and so applies to the early 

arrest (barely visible in the t = 5 plot in figure 4.5); one finds that the spectrum 

does indeed initially arrest at around /c = 6. 

4.3.2     Potential vorticity and surface vortices 

As noted above and in chapter 3, topographic waves have zero surface potential 

vorticity, so one might ask of the fate of that field. The potential vorticities of the 

weak slope run of figure (4.4) are shown in figure (4.8). Here it is obvious that 

the flow has broken into two components: the bottom-trapped wave field and a 

collection of isotropic, surface vortices. In fact, in terms of PV the weak slope 

case resembles both the ß = 0 and the ß ^ 0 barotropic cases in that vortices are 

present where the mean PV gradient vanishes. The contrast between the t = 40 
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plots in figure (4.8) and figure (4.4) is striking. 

Some differences with the barotropic cases are evident, though. The slope vor- 

tices are smaller than their barotropic components, an aspect which is quantified 

below. Also, the deep PV contours appear more strongly perturbed, indicating 

the greater importance of relative vorticity and/or stretching in the slope case. 

Note that the perturbations are the most severe at t = 5, or shortly after the 

period of strongest baroclinic to barotropic energy conversion (figure (4.6)). At 

the late time the perturbations are smaller, consistent with wave domination. 

The differences between upper and lower perturbation PV fields are high- 

lighted in plots of the enstrophy spectra, shown in figure(4.9). The two dimen- 

sional enstrophy is shown in the upper panels; the isotropic spectra are superim- 

posed at lower left, with the flat bottom spectra at lower right for comparison. 

The two dimensional spectra show that the upper field is nearly isotropic and 

covers a broad range of scales, whereas the lower field is anisotropic and dom- 

inated by a strong peak at (k,l) = (1,4). Plots of the two dimensional kinetic 

and potential energy spectra (not shown) reveal a similar peak, so that the peak 

is representative of the dominant wave harmonic. 

The band-averaged spectra similarly suggest a broad range of scales for the 

upper layer enstrophy and an "arrested" lower layer enstrophy (compare |g2|
2 with 

the kinetic energy spectra in figure (4.5)). Of interest though are the significant 

differences from the flat bottom case. In the latter case, the upper layer enstrophy 

is peaked, and at scales somewhat smaller than the domain scale; this is due to 

the compactness of the vorticity field compared to the streamfunction field which 

does fill the domain. In contrast the lower enstrophy is vanishing. In the absence 

of topography enstrophy decreases monotonically due to numerical dissipation, 

and the choice of a sub-deformation scale, surface-trapped flow yields a weak 

initial lower layer PV field. Thus, no coherent vortices emerge in the lower layer 

and the deep enstrophy is strained out by the upper layer vortices.   In other 
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words, the flat bottom case evolves to a surface-trapped PV distribution. The 

deep enstrophy is not conserved over the slope, and actually grows to exceed 

the total surface enstrophy. The surface vortices are still present, but do not 

dominate the dynamics as in they are found to in the flat bottom case. 

It should be emphasized that the distinguishing feature of the slope case is a 

coexistence between surface potential vortices and arrested waves, and that this 

coexistence is a consequence of the vertical variation of the mean PV gradient. 

In the barotropic cases, vortices either merge and grow or disperse into Rossby 

waves. 

McWilliams (1990a, hereafter M90) employed a vortex counting routine to 

quantify interactions between vortices in the ß = 0 barotropic case, as noted 

in Chapters 1 and 2. He found that the number of vortices exhibited a power 

law decay, i.e. N a t~-75, and that the mean peak vorticity remained nearly 

constant. All other vortex properties appeared to have power law dependences 

on time as well. The findings prompted Carnevale et al. (1991b) to propose a 

scaling theory wherein all vortex properties and global turbulence properties (e.g. 

total enstrophy) were predicted if the decay rate of the number of vortices was 

known. A study of a collection of point vortices with a merger law was shown to 

be consistent with the theory (Weiss and McWilliams, 1993), but it is possible 

that the decay of the number of vortices is a result of finite numerical resolution 

(Dritschel, 1994). In any event, it is reasonable to compare the statistics of the 

surface vortices in these cases with the barotropic case, and the vortex counting 

approach presents a useful means of examining the results. 

The vortex counting routine is described in Chapter 2; essentially the routine 

identifies simply connected regions which have vorticity greater than a prescribed 

threshold. The surface potential vorticity is the field analyzed, as opposed to rela- 

tive vorticity (McWilliams, 1990b), and the threshold value, chosen by examining 

plots of the field, was set to 10 (see also Benzi et al., 1988). Vortex statistics for 
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three cases are shown in figure (4.10). The three cases are a flat bottom run, the 

A = 4 slope case, and a weaker slope case with A = 16; shown are the number of 

vortices, mean area and mean peak, or absolute maximum, of potential vorticity. 

The number of vortices is comparable in all three cases and the runs are nearly 

indistinguishable at late times, given that the measure is noisy. Moreover, the 

rate of decay is consistent with the barotropic rate given in M90, indicated by 

the solid line, suggesting that the merger rate, perhaps surprisingly, is unaffected 

by the wave field. The only apparent difference is that there are more vortices 

at early times in the slope cases, particularly noticeable with the A = 4 case. 

The mean peak vorticity is also comparable in the three cases, and weakly 

increasing. As noted, M90 held that the mean peak vorticity was approximately 

constant. He argued that selective losses of weaker vortices to mergers, which 

would increase the mean, were balanced by a viscous decay of the stronger vor- 

tices yielding a nearly constant mean. Weiss and McWilliams (1993) found that 

the mean decayed slightly, indicating a greater rate of viscous decay. If the 

increase is significant in these results, one expects that the change due to merg- 

ers is dominant. A possible reason for the discrepancy is that M90 and Weiss 

and McWilliams used hyperviscous damping for their spectral runs, whereas the 

present runs were made with a numerical filter; the latter was shown in chapter 2 

to limit decay of intermediate wavenumbers. However, due to computational lim- 

itations, sensitivity to damping schemes were not conducted in the turbulence 

runs. In any event, the deviation from a constant mean peak vorticity is not 

large, even in the presence of the slope. 

Significant differences between the runs are found with the mean areas. In 

the flat bottom case, the area is increasing, albeit somewhat less than in the 

barotropic case of M90, although such a difference is plausible with a single 

realization. In contrast, the area is found to decrease in the slope cases at a 

rate which depends on the size of the slope. In the A = 4 case, the vortices are 

151 



significantly smaller even when counting commences, at t = 5.   At later times, 

the A = 4 vortices are roughly one third the size of the flat bottom vortices. 

The difference in the areas is linked to the arrest to topographic waves, as 

explained in the following. The vortex dynamics over a flat bottom and weak 

slope are examined in more detail, to illustrate the changes incurred by the slope. 

Flat bottom 

In the fiat bottom case, the (initially weak) lower layer enstrophy is strained 

out and dissipated, as noted above, whereas the surface PV evolves to a collection 

of isotropic vortices. Thus the surface vortices may be idealized as having only 

surface potential vorticity. As in Chapter 3, the PV can be inverted to yield the 

streamfunction of such a vortex: 

; (*2 + F2)g1        1 F2q1 

where A = K
2
{K? -\-F\-\-F2). Mergers between the vortices increase their size, and 

so decrease K. In the limit K —> 0 in (4.3), the upper and lower streamfunctions 

become equal so that the vortex flow approaches barotropy. Thus an increase 

in horizontal scale automatically entails an increase in vertical scale of motion, 

as in Charney (1971). That larger vortices have stronger deep flow is evident in 

plots of the relative vorticity (figure (4.11)). Interestingly, the change in vertical 

scale apparently does not alter the merger statistics. If one "counts" vortices in 

the barotropic case shown in figure (4.1), one finds similar numbers, sizes and 

strengths of vortices; in other words, the M90 results carry over to the two- 

layer flat bottom case exactly when one considers potential vorticity in the latter. 

However, this fact could be anticipated from the work of Polvani et al.   (1991) 
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Figure 4.10: Vortex statistics for weak slope cases. Shown are runs with ß2 = 0 
or A = oo (solid), A = 4 (dots), and A = 16 (dashed). Vortices are connected 
regions with qi > 10. 
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who found that mergers between vortices with zero deep potential vorticity occur 

at the same separation as between barotropic vortices. Merger is the fundamental 

process occurring in the late stages of the turbulence calculations. 

McWilliams (1990b) found that the population of vortices in his stratified 

calculation decreased faster than in the barotropic case. However, as mentioned 

in section (4.2) of this chapter, he chose an initial flow which had energy uniformly 

distributed in the vertical. Thus vortices appeared at multiple levels and could 

"merge" via the process of alignment (Polvani, 1994). The present results suggest 

that confining the vortices to one level, i.e. the surface in this case, results in a 

two-dimensional decay in the number of vortices. Note that McWilliams (1990b) 

suggested that the alignment process might be to the barotropic cascade what 

horizontal mergers are to the horizontal cascade. However, the present results 

illustrate a case in which the vertical scale increases without alignment. Here, 

the streamfunction field approaches barotropy while the PV field remains layer- 

trapped. 

A second point is that the surface kinetic energy must always exceed the 

deep kinetic energy for a collection of surface potential vortices. The ratio j^- 

at wavenumber K is (1 + jr)2, which is always greater than one except at K = 0 

where there is no kinetic energy. 

Weak slope 

The primary difference between the weak slope and the flat bottom case is 

that at a certain scale (arrest scale) the vortex will "lose" its lower portion to 

topographic wave radiation. As studied in Chapter 3, when a barotropic vortex 

undergoes topographic wave radiation, it loses its deep flow and a portion of the 

surface flow. The surface potential vorticity remains unchanged, but the vortex 

left behind, with a surface-trapped streamfunction, is weaker. 

Such changes to the surface vortex are found to have two effects. The weak- 
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Figure 4.11: The relative vorticity fields at t = 20 for the flat-bottom (left) and 
slope (right) cases. The contour values are ±[10 : 10 : 100]. 
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ening of the vortex favors filamentation by neighboring vortices because the po- 

tential vorticity is primarily stretching vorticity. This appears to occur until the 

surface PV is dominated by the relative vorticity, which means the final vortex 

will be smaller than deformation scale because the ratio of kinetic to potential 

energy for a surface vortex varies as the ratio of the vortex radius to deformation 

radius. Plots of relative vorticity such as in figure (4.11) indicate that the scale 

of the surface relative vorticity is the same as the surface PV, consistent with 

this notion. Figure (4.11) also shows that it is difficult to identify a lower portion 

of the surface vortices. 

Secondly, it is easy to imagine that radiation of the deep flow enhances 

baroclinic instability. Radiation and filamentation continually produces sub- 

deformation scale, surface-trapped vortices which will, in turn, continue to merge 

and produce larger vortices. The product vortices, deformation scale and surface- 

trapped, will likely be unstable and thus prone to losing more energy to the lower 

layer. The process is illustrated schematically in figure (4.12). The figure shows 

surface potential vorticity and bottom streamfunction, with unshaded indicating 

zero and shaded non-zero values. In the flat bottom case, shown at the top, 

small surface vortices merge to yield a larger surface vortex. If this vortex is 

larger than deformation scale, it becomes unstable and yields two vortices which 

are more barotropic (C), i.e. have deep flow. These vortices then merge again to 

produce larger vortices with stronger mean flow (D). However, instability occurs 

primarily at the second stage, or stage B as indicated. 

In the slope case, radiation of the deep flow is now possible. This means 

that the more barotropic vortices at stage C effectively return to stage A (albeit 

with weaker ^l), and thus can merge (B) and become unstable again. Growth 

of the surface vortices is defeated because the vortices can never attain stage D. 

Judging from the spectral fluxes and the integrated lower layer kinetic energy, the 

enhanced transfer of energy occurs early on, when the density of vortices is higher 
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and mergers more frequent. But instability is also prolonged by the presence of 

the slope, as indicated by baroclinic to barotropic fluxes at later times. 

Note that a weaker slope (the A = 16 case in figure (4.10) for instance) 

increases the arrest scale, and thereby delays the radiation of the deep flows. 

This permits the merging vortices to become larger before being weakened by 

radiation and filamentation, which in turn increases the mean vortex area. 

The schematic illustrates that filamentation of the surface potential vortices 

must occur, or that the area of the potential vortices must decrease, as in figure 

4.10. To see this, assume rather that qi is conserved exactly during merger 

and instability. Then the areas of the surface vortices at state C are equal to 

those in state A; however, as the lower layer streamfunction is now non-zero, the 

energy at state C must therefore be greater than at state A so that energy is 

produced during merger and instability. This is certainly not the case (the total 

energy decreases monotonically), so that q\ is not conserved, and the vortices at 

C are smaller than at A. Filamentation must occur during merger and during 

instability. 

In addition, the waves also likely filament the vortices, as with the initially 

barotropic vortex in the Case A to D transition region discussed in chapter 3. 

There the surface vortex was strongly deformed by departing waves, to the point 

of splitting into two smaller vortices. That vortex was 2.5 time deformation scale, 

but the important point is that near barotropic waves can be destructive to sur- 

face vortices, and break them into smaller structures. 

Summary: weak slope 

The picture which emerges in the case of the weak slope is one in which the up- 

scale cascade is arrested as vortices in the lower layer yield to bottom-intensified 

topographic waves. Coexisting with the waves is a population of isotropic surface 

potential vortices, which continue to merge and become unstable, thereby losing 
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energy to the waves and increasing the transfer of energy to the lower layer over 

that observed in the flat-bottom case. 

The strength of the slope in this limit determines at what scale waves become 

dominant. In the case above, the slope was strong enough to arrest the cascade 

soon after passing the deformation radius. This was in turn the cause for the 

sharp reduction in the size of the surface vortices. If the slope had been weaker, 

the vortices would have reached a larger scale before their lower portions were 

dispersed. This causes the area on average to be larger (figure (4.10)). 

The last point to mention is that the vortices, after releasing energy to the 

waves, are primarily smaller than deformation scale and baroclinic. Similar fea- 

tures have been studied before under the name "submesoscale coherent vortices" 

or "SMCV's" in the terminology of McWilliams and Gent, 1986. Here we find 

that such features evolve naturally in the presence of topographic wave radiation, 

and so the process outlined above yields a possible explanation of their origin. 

The fact that they are smaller than deformation scale implies that they are more 

sensitive to coarse numerical resolution. In fact, in identical runs with 1282 grid 

points, the population dwindled to zero in the A = 4 case due to dissipation 

during straining events. The effect of resolution of the vortex population was 

also noted in Benzi et al. (1986). 

4.4    Strong slope: A = .1 

In Chapter 3 it was found that surface vortices slightly larger than deformation 

scale were stabilized when the slope was large enough so that A was smaller than 

approximately one half. Thus one might expect that such a strong slope will 

have a similar effect on the merging vortices arriving at deformation scale. As 

will be seen below, the slope is unable to block the spin up of the lower layer, 
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but rather slows the rate at which energy is lost to deep flow. Comparisons will 

be made to case in which the lower layer is infinitely deep and motionless to 

highlight similarities and differences. 

4.4.1     Streamfunction and energy 

The numerical run in this case had a lower layer which was four times deeper 

than the upper layer, so that 8 — .25. Numerical limitations made it difficult 

to retain equal layer depths and have a slope which was strong enough to yield 

such a small value of A. Specifically, to obtain A = .1 with F\ = F2 = 100 

required a (nondimensional) slope of order 2000 — 3000 which in turn required a 

prohibitively small time step due to the rapid waves. However, results discussed 

below reveal that increasing the lower layer depth and increasing the slope have 

the same effect on the evolving surface flow, with the exception that the evolving 

deep flow is weaker with a deep lower layer because the initial potential energy is 

decreased. Thus the primary run had 8 = .25 and ß2 = 500, but a second shorter 

run with ß2 = 3000 was made for comparison. 

The streamfunction fields for this case are shown in figure 4.13. As in the weak 

slope case, the cascade to larger horizontal scales is apparent; but in contrast, 

the flow does not become barotropic. The surface flow at t = 20 appears to be 

nearly isotropic and the deep flow (magnified by a factor of 5 in the figure) is 

weaker and very anisotropic. The surface flow appears "vortex-like", and the 

deep flow is "jet-like". The latter is found to have an expression at the surface 

as well, which is apparent in the lower part of the lower left panel. 

Two principle characteristics which will be studied in some depth are the 

following. The scale of motion at the surface is nearly deformation scale, if 

slightly larger. And, as is obvious by now, the deep flow is non-zero, so that the 

slope has not blocked the loss of energy to the lower layer. 
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The "arrest" at the deformation scale can be seen more clearly in plots of the 

isotropic energy spectra, shown in figure 4.14. The upper layer kinetic energy 

shifts to the left, but appears to stall at a scale somewhat larger than deformation 

scale; larger scales are dominated by the potential energy. For comparison, the 

energy spectrum from a one and a half layer integration (^2 = 0) is shown at 

the lower right. It too shows that the upper layer kinetic energy is peaked near 

the deformation scale. The potential energy here dominates at all scales larger 

than the deformation radius; this is reasonable because YW 
a ^L2 for a surface- 

trapped flow. Thus the strong slope case resembles the one and half layer case to 

a first approximation. The differences between the two cases may be attributed 

to the deep jets: KE2 ^ 0 and KE\ is increased at larger scales due to the 

surface expression of the jets, as seen below. 

The "layerwise" spectral fluxes, defined in Chapter 2, are also indicative of 

an arrest at the deformation scale. In the two-layer case the fluxes comprise 

self-advective fluxes for each of the two layers, and a thickness flux which is 

equivalent to that in the barotropic/baroclinic flux formulation; they are shown 

in figure (4.15). Again the one and a half layer results are included, as are the flat 

bottom fluxes. In the one and a half layer case, there is no potential energy flux 

nor lower layer flux, so only the advection of upper relative vorticity contributes. 

The latter flux is large initially, but decreases substantially at the deformation 

radius. In the other cases the flux is also surface-trapped and large initially. 

However, in the flat bottom case the flux passes the deformation scale and is 

joined by a weaker upscale flux in the lower layer. The strong slope case more 

closely resembles the one and a half layer case in that the upper layer flux nearly 

ceases near the deformation scale and the thickness and lower layer fluxes are 

nearly negligible. 

The deformation scale arrest will be examined in more detail later, when 

the upper layer vortices are considered. First though, the question of the spin- 

162 



t=5 
10U 

io-2 
■ 

-.10-4 
Syr \ 

\. ^\ 
o> S/N    ' A\   \ 
a> • 
c Y      \ 
^10"* 

\    \  \ 10 .     \   \ \     \ 1 
\    1 

s 1 
■m"10 \   ll 

10" 10' 1<T 

t=20 
10" 

10" 

>.1(T 

^IO"
6 

10"' 

1.5 Layer Case at t=20 

10" 

. ^        * X 
S             ^v 

\\ 
\\ 
\\ 
\   \, 
\  \ 
\ \ 

\   \ 
\   \ 
\ 

\ 1 

10" 10' 10' 

Figure 4.14: The energy spectra for the strong slope case and the one and a half 
layer case (lower right). The components are KEX (solid), KE2 (dashed) and 
PE (dash-dot). The spectra have been averaged in unit wavenumber bins from 
[K — .5,/C + .5). 

163 



Layer Fluxes (slope) 

0.6 

0.4 

0.2 

0 iV 
:          ^~^ 

1.5 Layer case Flat bottom 

10" 10 

0.6 

0.4 

0.2 

0 

10" 

\ ' 

10' 

0.1 

-0.1 

•--~~w* 

10" 10' 

Figure 4.15: The layerwise spectral fluxes for the strong slope case (left), 
flat bottom case (center) and one and a half layer case (right). The fluxes 
are ^{^J^i,^)} (solid), ftftfej^,«;2^)} (dashed), and ^F^V^i, ^2) 
(dash-dot). The times are t = 1 (top), t = 3 (middle) and t = 10 (bottom). Note 
that the scales are different for the different times to facilitate comparison. 

164 



up of the lower layer is addressed. Besides the development apparent in the 

streamfunction plots in figure (4.13), an active "topographic flux" is found in the 

barotropic/baroclinic spectral fluxes, shown in figure (4.16). As the barotropic/baroclinic 

flux formalism is more complicated in the case of unequal layer depths, I have 

used the shorter duration run with equal layer depths and /32 = 3000 for this 

example; the results are qualitatively similar for the unequal layer depth case. 

One finds that both barotropic and baroclinic fluxes are dominated at early 

times by nearly equal self-advective fluxes. This is simply a result of the flux 

being almost entirely confined to the upper layer, for when ■02 ~ 0: 

9t{PJ(4>, K2
4>)} « 3*{# J(^, /c2^)} (4.4) 

and 

3fc{f J(f, /cV)} « K{#J(^i, /c2^)}. (4.5) 

In addition to this flux, though, one finds a transfer from baroclinic to barotropic 

modes, and a topographic flux in the opposite direction, as in the weak slope case. 

Again energy is being lost to bottom-intensified topographic waves. These fluxes 

are weaker than in weak slope case and noisy, but present even at late times in 

the run. 

Consistent with this, the lower layer kinetic energy is found to increase mono- 

tonically throughout the run, as seen in plots of the area-integrated energy com- 

ponents shown in figure (4.17).   The one and a half layer case, also shown, is 

165 



Barotropic fluxes 

0.05 

li        0 

-0.05 

10" 

V _ 

I  V-x - -* -* 

Baroclinic fluxes 

0.05 

/'»'•A •■•■••■-" 

0 

^-- 

0.05 ■ 

10' 10" 10' 

0.05 

II 0 ■ 

-0.05 

'' :   \s   _ ^  

0.05 

-0.05 

10" 10' 10" 10' 

0.05 

IT        ^ 

-0.05 

"   \/S^"—» ' 

0.05 

-0.05 

/'» 
-"«süJ_i^-^ 

y   -;■---"-- 

10" 10' 10" 10' 

Figure 4.16: The barotropic and baroclinic fluxes for the strong slope case. The 
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useful for comparison. In that case the sum of upper kinetic energy and poten- 

tial energy are conserved, and a decrease in the former is balanced by an increase 

in the latter; as noted before, the ratio -j^r varies as FL2 and so must increase 

with the scale of motion. The initial changes in KE\ and PE in the slope case 

are nearly the same, but at later times potential energy is lost as the lower layer 

kinetic energy increases. 

In Chapter 3 it was found that a strong slope could stabilize a vortex which 

was marginally larger than deformation scale. In particular, if A < .5, a small 

initial perturbation caused a small amount of wave radiation, but thereafter the 

vortex relaxed to an axisymmetric stable state. But in the case of a turbulent 

surface flow, potential energy is lost even when A = .1; what is the discrepancy? 

The fact that waves were radiated when the single vortex was weakly per- 

turbed but not when it relaxed to axisymmetry is telling. The circular surface 

vortex in the absence of external forcing is a steady solution of the two layer 

equations over the slope on the /-plane so that relative vorticity and interfacial 

stretching not only balance, but do not change in time. The surface vortices in 

the turbulence case are never steady, but are continually advected and perturbed 

by other vortices. In the process, the interface undulates up and down, gener- 

ating vorticity at depth. In other words, interfacial motion requires motion at 

depth to conserve PV in the lower layer. With a slope, the interfacial motion 

can drive cross-isobath motion, which in turn can generate waves, as follows. A 

parcel in the lower layer must conserve total PV: 

92 + /32y = V2V>2 + Fifa -1>2) + fay (4.6) 

so that time changes in the parcel PV are zero, implying: 
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Fij^i = jt{- V2 V>2 - % - ß2V) ■ (4-7) 

If ^2 is zero initially and the slope large, the cross-slope velocity induced is 

roughly v2 a. 2j£ . Now the importance of A becomes apparent: it is the ratio 

of the magnitude of interfacial displacements to the size of the slope and thus a 

measure of the strength of induced cross-isobath flow. In the turbulence case, the 

velocity scale at the surface is also a measure of the magnitude of the interface 

driving (this is not the case with the steady vortex where U\ measures the swirl 

speed but not the interfacial motion). 

From this simple argument, it seems that A in the unsteady flow case is a 

measure of the "ease" with which surface flow can induce motion at depth. To 

quantify this, a number of runs were made in which slope, lower layer depth (F2) 

and U\ were varied. The results are shown in figure (4.18). As the lower layer 

kinetic energy increases monotonically, it is the simplest to use. At upper left it 

is seen that increasing the bottom slope decreases the rate at which KE2 grows. 

By measuring the change in slope of the KE2(t) curves at t = 0, one can quantify 

the dependence of the growth rate on the slope. Thus the initial change in lower 

layer kinetic energy ((KE2(t = At) - KE2{t = 0))/ At) is plotted at upper right. 

The straight line has slope —1, so the dependence is a simple inverse dependence 

of growth rate on slope. 

Likewise the dependence on F2 and U\ can be found, although changes in 

these parameters mean a change in the total initial energy and in the time scale, 

which must be corrected for a comparison. The initial energy spectrum may be 

written as: 

E{k,l,t = 0) = E0(SK
2
\^\

2
 + F2\^\2 = E0S(K

2
 + FOh/^l2 (4.8) 
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with E0 a Uf, which implies that the energy varies with 8 and with the square 

of U\. The dependence on 8 is slightly more complicated because F\ is also a 

function of 8, but with this initial spectrum (/c0 > y/F\) it is nearly linear.4 

The time scale is nondimensionalized by («o^i)_1 where «0 is the initial peak 

wavenumber.5 Combining this with the energy scaling yields a nondimensional 

scaling for the growth of deep kinetic energy of Si^Uf. 

The dependence of growth rate on 8 and U\ is shown at the bottom of figure 

(4.18). One finds a clear linear dependence on U\ and a nearly linear dependence 

on layer depth ratio. The deviation from linearity with 8 is probably the result 

of the 8 dependence of F1} mentioned above. Note also that there are slight 

departures at smaller ß2 and larger U\ where A —> 1. Thus the growth rate 

appears to scale linearly with A when this parameter is less than unity. 

The parameter A thus plays a different role in the turbulence cases. It es- 

sentially determines how quickly the surface vortex field loses APE to the lower 

layer flow. As with the single vortex case, a steeper slope and/or deeper lower 

layer favor surface stability, but in the unsteady case, baroclinic instability is not 

defeated by the slope, only impeded. 

4.4.2     Potential vorticity and surface vortices 

The potential vorticity fields are shown in figure 4.19. As in the weak slope case, 

vortices emerge at the surface, but now the large slope completely dominates 

the lower layer PV field so that there are no closed contours and only weak 

perturbations visible. As in the weak slope case the surface vortices are isotropic, 

but they are somewhat larger in this case. As is seen below, they are also larger 

4If the initial potential energy was larger, a -^—g scaling might be more appropriate. 
5 One might think that the initial scale of motion in the lower layer might depend on the 

deformation radius, and thus the layer depths, but in the experiments the mean scale of motion 
in layer two varied only weakly under changes in parameters, i.e. it seemed only to depend on 
the initial scale of motion. 

170 



0.14 

0.12 K=A/S 

0.1 

ujO-08 

0.06 

//A=.26  y 

/        ^"            A =.16 

0.04 

0.02 
/ s 

"^T--■'"""" A=-1 

1 2 
Time 

Figure 4.18: The growth of lower layer kinetic energy as a function of A. The 
upper left plot shows KE2 with Fx = F2 = 100 for various A, with faster growth 
rates corresponding to smaller slopes. The other plots show (KE2(t = At) — 
KE2(t = 0))/ A t, with At = 0.2, as a function of upper layer velocity, layer 
thickness and slope. The energy has been nondimensionalized by 8Ul and the 
time step by (/c0t/i)

_1 • The slopes of the lines shown are —1.0 (Ui), 1.0 (6) and 

1.0 (I/O. 

171 



than in the flat bottom case. In addition, they are comparable in scale to the 

isotropic structures seen at t — 20 in the surface streamfunction of figure (4.13). 

The differences in vortex characteristics can be quantified by using the count- 

ing routine; the results for this case as well as for the one and a half layer and flat 

bottom cases are shown in figure (4.20). As before, the decrease in the number 

of vortices appears the same for the three cases. This is rather remarkable given 

that baroclinic instability occurs in one case, not in another and is impeded in 

the third. There is a faint suggestion of a slowing in the rate of decrease in the 

one and a half layer case; this is actually what one expects, as discussed below. 

Likewise the mean peak PV is nearly the same for the three cases, and cer- 

tainly equal with the uncertainty of single realizations. There is a weak increase 

in the mean, as in the weak slope case. 

Again the difference comes in the mean area of the vortices, shown in the 

center panel. In this case, the slope vortices are larger than in the flat bottom 

case. The one and a half layer vortices are larger still, and increasing at a rate 

which is consistent with the power law of M90. The slope vortices appear to 

increase in size initially, but then level out and perhaps decline later on. 

The larger area and the deformation scale arrest discussed above are linked, 

and are related to the loss of a barotropic portion of the vortex flow. A barotropic 

vortex with nonzero circulation has an azimuthal velocity which decays slowly, 

specifically v(r) a ^, as noted in Chapter 3. In contrast, a vortex in one and a 

half layers has a velocity field which decays exponentially beyond the deformation 

radius, for v(r) a -Ki(^) a e~(|). This can be seen by inverting the potential 

vorticity: 

V2 rj> - Fxil> = qi (4.9) 
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Figure 4.19: The upper and lower layer potential vorticity fields for the strong 
slope case (8 = .25, ß2 = 500). The contour values were ±[60100] at the upper 
left, ±[15 30 60100150] in the lower left plots and ±[390 78011701560] in the 
right-hand plots. 
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Figure 4.20: Vortex statistics for strong slope cases. Runs shown are the flat 
bottom case (dash-dot), the A = .1 case (dashed) and the one and a half layer 
case (solid). Vortices are connected regions with qi > 10. 
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which yields tp a K0(j). The one and a half layer vortex is a purely baroclinic 

vortex and has no barotropic flow, and as a result its range of influence is much 

smaller than a barotropic vortex. It is essentially unable to interact with vortices 

farther than a deformation radius away. If the vortices are small and densely 

packed, they will advect and be able to merge. But if the vortex is deformation 

scale, the velocity field in effect does not extend beyond the edge of the vortex. 

Thus cascading turbulence in one and a half layers arrests at the deformation 

scale because the vortices simply cease to merge.6 

The study of mergers between surface vortices of Polvani et al. (1991) is again 

of relevance. One aspect they considered is the effect on mergers of increasing 

the lower layer depth, and in particular mergers in one and a half layers. Of 

interest for the present results is that they found that vortex filamentation was 

greatly suppressed during interactions in one and a half layers. Vortices at the 

critical distance for merger would join to form long asymmetric "blobs" and 

rotate thereafter. The larger area seen in figure (4.20) is likely a consequence of 

this suppressed filamentation; as vortices coalesce, less vorticity is cast off and 

so the product vortices are simply larger. If this is so, one must conclude that 

filamentation is similarly suppressed over a strong slope. A study of mergers over 

a strong slope would confirm or deny this; that will left for future work. 

If the velocity field is localized to the vortex as discussed above, the stream- 

function and potential vorticity fields ought to have the same scale; this appears 

to be the case in one and a half layers, as seen in figure (4.21). The same is true 

for the strong slope case, shown in the lower half of the figure. The streamfunc- 

tion in the slope case also has hints of zonal flow (the lower portion of the figure) 

which is the surface expression of the deep flow which is intensifying and is even 

more noticeable at later times. 

The same effect has been noted in the case of cascading turbulence in the shallow water 
system where energy arrests at the external deformation radius; see Polvani et al., (1994). 
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1.5 Layer Streamfunction 
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Figure 4.21: Surface potential vorticity and streamfunction for the one and a half 
layer and strong slope cases at t = 20. The streamfunction contour values are 
±[.05.2.511.52] and the vorticity values ±[153060100150]. 
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The decline in vortex interactions can be seen quite clearly in overlaid plots 

of surface PV from a range of times. In figure (4.22) single contours of PV from 

t = 30 to t = 35 are shown for the flat bottom, one and a half layer and strong 

slope cases (two nearly equal values of PV were used to accentuate the lines). 

Over a flat bottom there is active motion, so much so that it is often difficult 

to identify single coherent tracks. But in one and a half layers, the vortices are 

much more sluggish; there are identifiable mergers, but on the whole there is 

much less interaction. The same is true over the strong slope. Although there 

is a clear zonal drift due to advection by the intensifying deep flow, the vortices 

appear to interact very little with one another. Thus one finds an "arrest" in the 

latter two cases simply because the vortices are becoming more stationary. 

One might wonder if the vortices are more stationary, why the number of vor- 

tices is decreasing equally as shown in figure (4.20). The answer is partially that 

the relatively small number of vortices increases the uncertainty of the measure. 

Alternately, while the one and a half layer vortices are becoming sluggish, the 

frequency of encounter has decreased in the flat bottom case at the same time, 

and both have the same effect. However, another reason is that there are a range 

of vortex sizes present at all times; while some of the vortices are deformation 

scale, others are smaller and still likely to merge with neighbors. If all the vor- 

tices were the same size at any one time, the difference between the two cases 

would be more dramatic. 

Deep flow 

The last aspect to discuss is the form of the deep flow. The condition A<1 

implies U\\fF?, <C -^r. The latter relation implies that the frequency of the 

interfacial "forcing" of waves is lower than the approximate isotropic topographic 

wave frequency at deformation scale. But as the wave dispersion relation is 

anisotropic, i.e. iv a ß2k, waves with low zonal wavenumbers have low frequencies. 
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Figure 4.22: Contours of the surface potential vorticity for the flat bottom, one 
and a half layer and strong slope cases. The contour values are ±[3035]. 
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Thus we expect that the surface forcing to generate waves of long zonal extent. 

The zonal elongation is apparent in the streamfunction plots in figure (4.13) 

as well in the two-dimensional energy spectra shown in figure (4.23). The upper 

layer kinetic and the potential energies are plainly isotropic, but the lower layer 

kinetic energy is strongly peaked around wavenumbers (k, I) = (1,10) - (1,12), 

or at a scale comparable to the surface deformation scale, but smaller than the 

deep deformation scale (\/F2=5). There is also a purely zonal (jet) mode around 

(k, I) = (0,4) which is at the deep deformation scale. One might imagine that 

the scale of the deep flow ought to be comparable to the scale of the forcing and 

therefore at the surface deformation radius, but more numerical runs are required 

to say with certainty. The jet mode is likely the result of continued forcing and 

upscale transfer at depth; as described by Vallis and Maltrud (1994), the A; = 0 

mode has zero wave frequency and is thus unable to arrest the cascade. Energy 

inevitably accumulates in this mode when continued forcing causes the scale to 

shift upwards. 

As the deep waves/jets are deformation scale, they have significant flow at the 

surface. Thus they can advect the surface vortices, and even cause filamentation 

of those vortices. The latter is responsible for the decrease in vortex area seen in 

figure (4.20), a decline which is more dramatic when the waves are stronger, as 

was the case with the shorter duration run with equal layer depths. The model 

periodicity permits the waves to re-enter the domain, as discussed before, and 

with larger slopes the rate of wave/vortex encounters increases, though the waves 

are weaker due to the inhibition of instability. Nevertheless, the periodicity is 

central to the weakening of the vortices by the waves. Whether such an effect 

is realistic in a larger domain with a localized (inhomogeneous) turbulent flow is 

another question, and is discussed more below. At least the interaction reminds 

us that the surface vortices may be affected by external agents. 

In conclusion, cascading surface turbulence over a strong bottom slope resem- 
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Upper kinetic energy 

Figure 4.23: The two-dimensional energy spectra for the strong slope case. At 
left are contours for the t = 2 fields, and on the right the t = 10 fields. Contours 
are at [.1.3.5.7.9] of the maximum of the KE^kJ) at each time: .0055 (t = 
2) , .021 (t = 10). 
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bles a one and a half layer evolution in that the cascade arrests at the deformation 

scale, due to the inhibition of coupling with the lower layer. However, unlike that 

case, energy is continually lost to the lower layer by an interaction between the 

undulating interface and the bottom slope. The rate at which energy loss occurs 

scales with the stability parameter A, so strong slopes or deep lower layers in- 

hibit the loss. In the late portion of the integration, the intensifying wave field 

interacts with the surface vortices, advecting them and even possibly inhibiting 

their growth through filamentation. 

4.5    Discussion 

4.5.1     Arrest: the Rhines diagram 

To summarize the spectral arrest over the topographic slope, I will compare 

to the arrest in the planetary ß in two layers, discussed in Rhines (1977) using 

diagrams similar to that of Rhines. The planetary arrest is shown in figure (4.24), 

a redrawing of Rhines's figure for the case of small scale baroclinic flow. The 

upper plane represents baroclinic motion, the lower barotropic motion. The y- 

axes are the mean frequency of the motion and x-axes are the mean wavenumber. 

Assigning a frequency to the turbulence, io = UiK,7 as in Batchelor (1953), one 

can plot the inverse cascade. Two cases are shown: one with a higher initial 

energy, and one lower. 

The inverse cascade proceeds as energy moves towards smaller wavenumbers 

(larger scales) and lower frequencies. In the barotropic case, co = UK and U 

is conserved so that the cascade proceeds on a straight line towards the origin. 

With stratification, U\ decreases with increasing scale due to the decrease in KE\ 

and increase in PE, seen for example in figure (4.17).   Thus the curves curve 

7This is equivalent to assigning an advective time scale T — jj-. 
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Figure 4.24: The arrest to planetary waves from a small scale initial flow, redrawn 
from Rhines (1977). The dashed lines mark the mean deformation wavenumber 
and the layer depths are assumed equal. 
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somewhat as they approach the deformation scale, indicated by the dashed line. 

On the upper path (the more energetic initial flow), baroclinic energy undergoes 

a "barotropic cascade" at the deformation scale, thereby making a transition 

to the lower plane. Thereafter it proceeds on a nearly straight line (baroclinic 

energy is small by assumption so barotropic kinetic energy is conserved) towards 

larger scales and lower frequencies. However, when it encounters the barotropic 

(and isotropic) Rossby dispersion curve, the cascade arrests as waves become 

competitive. The arrest scale from this argument is then at Kß = y (§0> where 

U is the velocity at deformation scale (not the initial velocity). 

The second curve, also discussed by Rhines (1977), is for weaker initial veloci- 

ties. In this case the baroclinic energy is arrested by baroclinic Rossby waves at a 

scale smaller than the deformation radius. The dividing line between baroclinic 

and barotropic arrests is the path which intersects the baroclinic curve at its 

maximum, i.e. when K
2
 = IF in the equal layer depth case. Thus the condition 

for baroclinic arrest is: 

rr s—     ßV2F TT      ß „ ,ft. U^<BJF- "> U<{F- (4-10) 

For ß = 2.1 x 10~n and a deformation radius of 30 km, the velocity scale must 

be less than about .5 cm/s. Only very weak flows can arrest in this manner; the 

more common path then is the upper one. 

The topographic case is different because there is only one dispersion curve. 

The analagous diagram may be drawn as in figure (4.25) where now the upper 

plane denotes upper layer motion and the lower is deep motion. One should note 

that these diagrams are only qualitative, for a surface trapped initial flow has 

both baroclinic and barotropic parts, which would change the previous diagram. 
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Likewise here the waves have a surface representation, but we require deep motion 

to excite them so the curve is only drawn for the bottom layer. 

Again two paths are shown: a more energetic path and a less energetic path. 

In the former case, the evolution is very much like the arrest to barotropic plan- 

etary waves; a cascade to the deformation scale, a barotropic cascade, then a 

nearly barotropic arrest to topographic waves of large vertical extent. The arrest 

scale is then re = J&jr where now U = U\ = U2 is the (barotropic) velocity at 

the deformation scale. As explained earlier, knowing this scale a priori requires 

knowledge of where the upper portion of the curve intersects the dashed line at 

the deformation scale. 

The second case with weaker initial flow reaches the deformation radius, but at 

a frequency below that of the isotropic topographic waves. Wave radiation occurs 

faster than the growth of deep disturbances and the barotropic cascade is thus 

blocked. However, energy is still lost to anisotropic waves of grave (topographic) 

zonal extent. So the curve arrests at the deformation radius in the upper layer 

while energy leaks away at the same frequency in the lower layer. 

Note that changing the slope shifts the dispersion curve up and down, so 

stronger slopes require stronger initial flows for a "barotropic" arrest. The strong 

initial flow case above is equivalent to the "weak slope" case in the text, and less 

energetic initial flow is the "strong slope" case. The dividing line between the 

two paths can be deduced as in the planetary ß case. The condition for the 

baroclinic arrest is approximately: 

^<^f>-<£-4       <-) 

Thus the diagram predicts the A-dependence.   Moreover, it suggests a similar 
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Figure 4.25: The arrest to topographic waves from small scale initial flow. Again 
the dashed line indicates the deformation wavenumber and layer depths are as- 
sumed equal. 
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value of A for transition to the value of | assumed before (and found from various 

experiments). 

The principal difference between the two cases is the difference in the disper- 

sion curves, and this stems from the symmetry/asymmetry of the PV gradients. 

The planetary waves have two dispersion curves, but the topographic waves only 

one because the gradient only acts in one layer. One might think that restor- 

ing the planetary ß effect to the topographic case would alter the development. 

However, as discussed in Chapter 5, if the slope is large, the same picture holds, 

with the modification that weak surface flows (U — 0\.5\ cm/s) may arrest in 

surface planetary waves. 

4.5.2    Vortices 

A second consequence of the asymmetry of the mean PV gradient is that vortices 

tend to be dispersed at depth, but not at the surface. Thus in both "weak" and 

"strong" slope cases one finds a collection of isotropic, long-lived vortices in the 

surface PV field at later times. These vortices dominate the flow in the strong 

slope case because the growth in wave intensity is inhibited. In the weak slope 

case they appear to play a secondary role, but are significant nevertheless because 

they represent an energetic, isotropic component of the flow only present at the 

surface. As noted in the text, the potential vorticity is a convenient way of 

separating the vortex and "wave" portions of the flow simply because the waves 

have no surface PV and are thus filtered out in plots of q^. 

The statistics (mean size, strength) of these vortices has been calculated and 

compared to previously published results of McWilliams (1990). I find that in 

all cases the decay of the number of vortices due to mergers is approximately 

the same, suggesting that the rate of vortex collision is not strongly affected by 

the presence of waves in the domain. However, the number of vortices in these 
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runs is relatively small (order 100), so it is difficult to identify small differences 

between runs. As explained, one expects the rate of decrease to slow with the one 

and a half layer and strong slope cases due to the inhibition of mergers between 

deformation scale vortices. 

The mean peak potential vorticity is nearly constant in all cases, consistent 

with McWilliams and with the assumption of Camevale et al. (1991b). However, 

the size of the vortices is found to be strongly sensitive to the slope, and the 

dependence of size on slope is not monotonic. A small slope favors smaller vortices 

because the arrest to topographic waves weakens the surface vortices, making 

them more prone to filamentation by other vortices, and perhaps by the waves. 

Increasing the slope (but with A > 1) decreases the mean area of the vortices by 

shifting the arrest scale to smaller scales. However, increasing the slope further 

(so that A < 1) leads to an increase in vortex scale. Over very large slopes 

the mean area exceeds that in the flat bottom case because filamentation is 

suppressed, as in the one and a half layer case (Polvani et al., 1991b). As is 

shown in Appendix B, the same effect can be achieved with a fiat bottom and a 

bottom Ekman layer; increasing the strength of damping decreases vortex areas 

to a degree, but then causes them to increase. 

4.5.3     Potential vorticity: the RMS PV diagram 

Given the complexity of a turbulent system, particularly one with baroclinicity 

and topography, it is useful to collapse the data. The potential vorticity, which 

separates out the two components of the flow, can be exploited to this end. 

A diagram which captures many aspects of the cascades over the slope may 

be constructed by plotting the root mean square (rms) potential vorticity in 

each layer, or root of the mean potential enstrophy, against the mean zonal and 

meridional wavenumbers, defined as: 
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These reflect the mean scales of the vorticity in each layer. By using the separate 

wavenumbers in this way, anisotropy may also be differentiated. 

The four cases referred to in this chapter are shown in figure (4.26): the flat 

bottom case, the A = 4 case, the A = .1 case and the one and a half layer case. 

The rms PV is on the y-axis, and the mean wavenumbers on the x-axis.   The 

upper layer points are shown with dots, and the lower layer points are k (x) and 

f(o). 

One sees immediately that the upper layer is isotropic, whereas the lower layer 

is only isotropic over a flat bottom; otherwise it becomes anisotropic. The upper 

layer rms PV is decreasing monotonically due to the forward cascade of enstrophy, 

and dissipation at small scales. It is found to stall near wavenumber 10 in the flat 

bottom case, as the energy feels the size of the domain. It reaches larger scales in 

the one and a half layer case due to the suppression of filamentation. In the slope 

case the inverse progress is blocked, probably by wave-induced filamentation. The 

most strikingly different case with respect to the surface PV is the weak slope 

case, in which the rms PV is decreased somewhat and the mean scale increased 

substantially, both the result of increased filamentation due to slope-induced 

enhanced instability. 

The lower layer evolution varies even more substantially. In the flat bottom 

case, \q2\
2 is conserved and is found to decay away due to dissipation and fila- 

mentation by the deep vortex flows. The initial forward cascade is a signature of 

a forward enstrophy cascade at depth, which was not discussed in the text (the 

return to larger scales occurs when dissipation removes small scales). In the slope 

cases the deep enstrophy is no longer conserved, but increases. In the A = 4 case, 
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Figure 4.26: The rms PV in each layer vs the mean wavenumbers in the along- 
slope and cross-slope directions. The upper layer points are designated by (.), 
and the lower layer points are for wavenumber k (x) and 1 (o). The upper layer 
wavenumbers were not differentiated because of the isotropy in that layer. Points 
are marked every time step and all runs are to t = 40. 
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one finds that the initial increase is isotropic, but after intersecting the decreas- 

ing surface points, it decreases and becomes anisotropic. Note that bottom and 

surface rms PV are approximately equal at the end of the run, with the deep 

PV at larger scales. With A = .1 this is no longer true, as the surface PV domi- 

nates at all times. The lower layer rms PV spins up from an initial scale around 

wavenumber 15; the zonal wavenumber decreases thereafter, but the meridional 

wavenumber settles down in the vicinity of wavenumber 18. The latter is slightly 

smaller in scale than the scale of waves/jets seen in the streamfunction plots, as 

the PV in finer scaled. 

While the plots present a useful summary of the principal features of the 

evolutions, they must nevertheless be viewed with caution for they do represent 

mean quantities. In the A = 4 case, the surface enstrophy was found to span 

a wide range of scales, so a single scale representation is perhaps dubious. The 

representation is more correct for the lower layer, where the wave energy tends 

to be dominated by a single scale (as noted also by Rhines, 1975). 

4.5.4    Observations 

One expects that both strong and weak slope regimes exist in the ocean. An 

approximate feel for the size of slopes required can be gained by considering the 

parameter, A. Rewriting it thus: 

FaU1=   f2UiH2   =   fUt 

ß2        g'H2fdyH      g'dyH 
K •    ] 

and substituting typical values for / = 1 x 10_45_1 and g' = 2.5 x 10~2m/s2 yields 

A « .004g^. For 1 m/s surface velocities, a slope which is larger than about .8 

percent is "strong". This is a significant slope, but not huge. On the other hand, 
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if the velocities are only order 10 cm/s, a .08 percent grade is "strong"; this is a 

more modest grade. 

In terms of observations, an ocean in an arrested barotropic state would have 

anisotropic, nearly barotropic flow oriented with the isobaths. In the Rhines 

planetary ß case, the arrested barotropic state has zonally oriented flow. If, on 

the other hand, the ocean were closer to the strong slope regime, one would 

expect strongly surface-intensified isotropic flow with the dominant length scale 

being the deformation radius. This flow would be coupled to bottom-intensified 

topographic waves, continually draining energy away. 

While there is good reason to expect both regimes in the ocean, several known 

characteristics agree with the strong slope scenario. The surface intensification 

of oceanic currents is well-known. Oceanic features such as warm core rings 

are much stronger at the surface than at depth (e.g. Joyce, 1984). However, 

a counter-example is that Agulhas eddies may be as much as 50% barotropic 

(Clement and Gordon, 1995) which suggests at least formation in a weak slope 

environment. Nevertheless, Wunsch (1983) notes the suppression of deep eddy 

kinetic energy over the mid-Atlantic ridge which certainly fits with a strong slope 

picture. 

From altimeter data it appears that horizontal wavenumber spectra of the 

ocean surface are consistent with classical two-dimensional turbulence (Stammer 

and Boning, 1992). These authors also found that the dominant scale of eddy 

variability at the surface was linearly related to the first baroclinic deformation 

radius, again consistent with the strong slope scenario. Of interest is that their 

results suggested turbulence over most of the ocean, rather than just localized in 

the region of the western boundary current. 

Lastly, as noted in Chapter 3, there are numerous observations of topographic 

waves on the continental slope of the eastern United States (Hogg, 1981; Smith, 

1983; Pickart, 1995).  These waves are bottom-intensified and radiating in from 
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offshore. Moreover, Pickart established a correlation between occurrences of the 

waves and meanders in the Gulf stream. While one must be quick to note that jet 

dynamics are not captured by the turbulence model, there is a strong resemblance 

to energy leakage in the latter to bottom topographic waves. However, one must 

also note that if the turbulence is localized (see below), both scenarios will produce 

radiating waves. The difference is that weak slope waves are more likely to be 

nearly barotropic. 

Hence, while it is not possible to say the ocean "favors" one scenario, there 

are many observations which agree with the strong slope case. If this is so, then 

the deformation radius may be the upward bound on oceanic cascades. This 

is quite a different picture from that of Rhines (1975) in which the dominant 

length scale is the planetary arrest scale and the motion inevitably barotropic. 

Likewise it is different from the /-plane, flat-bottom flow predicted by Larichev 

and Held (1995) in which the dominant length scale is the domain scale and the 

motion again barotropic. Of course, the present work is also on the /-plane, but 

as described in Chapter 5, if the lower layer is inhibited from spinning up, the 

energy cascade to a planetary arrest or the domain scale is blocked. 

In terms of flow over the continental shelf and slope, i.e. regions of the 

ocean which are well within the strong slope range, the results suggest greater 

variability at the surface than at the bottom. If, for instance, the relaxation of 

an upwelling front yields vortices, one imagines that the surface features could 

last long periods of time, after initially radiating waves. Likewise, the shelfbreak 

region could be highly variable at the surface, and eddies could persist there well 

after the time lower energy had been radiated away (on the time scale of order 

several days). 
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Appendix B: Geostrophic turbulence with a 
bottom Ekman layer 

A bottom slope alters a baroclinic turbulent cascade by allowing for the dis- 

persal of energy at depth by topographic waves essentially without removing the 

surface PV. A bottom Ekman layer dissipates energy at depth without directly 

altering the surface PV. To see this, consider the linear two layer equations: 

!*=0, (4.14) 

-92 = -i?V2V'2. (4.15) 

The equations have two solutions, a decaying one with 91 = 0 and a stationary 

one which carries the surface PV. Solving the bottom equation with qi = 0 —» 

^1 = -^F-^2 yields: 

dtq2     ^ + Fl + F2y
2 ^    > 

Thus fa ot- e~at where the decay time is weakly dependent on scale, i.e. a —* ^ 

for long waves and a —> R for short waves. Note that the damping decreases the 

surface streamfunction too, exactly as the waves project onto tpi. 

As the Ekman layer "acts" on the same portion of the flow as occupied by 

the topographic waves in the slope case, it can be exploited as an alternate way 

to study the effect of layer decoupling on the baroclinic cascade.  In a sense, it 
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can be thought to mimic the loss of topographic waves to the far field. It has the 

advantage of having no re-entrant waves to disturb the surface vortices, and so 

is perhaps better suited for a doubly periodic model than a slope. Due to this 

latter fact, lower resolution runs were possible because the surface vortices were 

not sheared out by the waves. 

Both weak slopes and weak bottom Ekman layers can destabilize a surface 

flow. Hart (1975) noted a decrease in the short-wave cut-off for vortex instability 

over a weak slope, and Pedlosky (1983) showed that any shear was unstable with 

a bottom Ekman layer, albeit with growth rates that depend on the scale of the 

motion and strength of shear. A very dissipative Ekman layer can stabilize a 

surface flow by defeating the growth of energy at depth. Scaling the lower layer 

PV equation as in Chapter 4, one finds that the ratio of the advection of thickness 

at depth to dissipation scales as: 

AR = ——. (4.17) 

This stability parameter is as in the slope case, but with R replacing ß2L. In 

the cases studied in Chapter 4, the dominant length scale was the deformation 

radius which had a value of -^ = .1. Thus one only requires R to be one-tenth 

the size of ß2 to obtain similar results, which in turn allows for a larger time step. 

Of course, the action of dissipation is different from that of a mean PV gra- 

dient. No distinct arrest occurs with dissipation, for instance, because there is 

no scale-dependent change in the efficiency of the cascade. Rather energy is sim- 

ply depleted at all scales of deep motion. However, the Ekman case, as another 

system with asymmetric layer forcing, serves as a good comparison. 

A number of low resolution runs (1282 grid points) were made with various 

values of R. The effects of an increasingly strong Ekman layer can be seen in plots 
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of the total energy and integrated surface potential enstrophy, shown in figure 

(4.27). The relation between energy and damping is not monotonic, as it would 

be in the barotropic case. For small values of damping, increasing R increases the 

rate at which energy is removed. But past a certain point, increasing R decreases 

the rate by inhibiting the transfer of energy to the lower layer.8 The parameter 

AH is order one around R = 10 if the dominant length scale is the deformation 

radius, which appears to be an appropriate dividing line in the response. 

At the largest values of R, the total energy approaches the 1.5 layer curve in 

which no energy is lost to the lower layer. However the Ekman layer does not 

eliminate instability, it only inhibits it. By reasoning similar to that in Chapter 

4, one may argue that interfacial motion drives motion at depth, and thus causes 

dissipation of energy. Therefore the total energy curves should approach the 1.5 

layer case asymptotically as R —> oo, but there will always be energy loss for 

finite values of R. 

The lower plot indicates the degree of filamentation in the surface potential 

vorticity field. The bottom Ekman layer, by defeating barotropic motion, hinders 

large vortex interactions. Hence there is much less filamentation in the 1.5 layer 

case and in the large dissipation cases. In weaker dissipation cases this is also 

true initially, but then the loss is increased at later times due to later instability. 

However, the surface enstrophy is approximately the same for all cases with 

A*>1. 

The mean vortex area is shown in figure (4.28). Again the vortices are found 

by grouping grid points with surface potential vorticity greater than a fixed 

threshold value (here 10). Here to there is a non-monotonic dependence on R. 

Weak dissipation, like the weaker bottom slopes, causes a decrease in mean area 

by weakening the surface flows, which favors filamentation, and by destabilizing 

8A similar effect was noted with baroclinic Kelvin waves in the presence of a bottom Ekman 
layer in Allen (1984). 
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Figure 4.27: The total energy for the bottom Ekman layer cases. The total loss 
of energy is increased in these cases due to the lower resolution used (1282 grid 
points). The two layer flat bottom case and the one and a half layer case are 
shown for comparison. 
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them by removing the deep flow. The mean area is less with slightly larger values 

of R because bottom dissipation occurs faster, so the surface vortices do not have 

time on average to grow. When AR < 1 the mean area again increases, and the 

asymptotic limit is the 1.5 layer case. Here, filamentation is suppressed as in 

Polvani et al. (1991) and the vortices are ceasing to interact with vortices far 

away from themselves. As before, it is the defeat of the barotropic mode which 

is responsible for the shift. Note that the increase in mean area is then again 

consistent with the barotropic results of M90, suggesting mergers continue, and 

one observes that the number of vortices is also decreasing. A longer integration 

ought to show a deviation from the barotropic merger rate as deformation-scale 

vortices more and more cease to interact. 

As mentioned above, comparing A and AR shows that the Ekman case is 

like the slope case, but for the substitution ß2L —> R which is a change in 

time scales from the topographic wave period to the Ekman decay time scale. 

If a strong bottom slope is on the order of 100/0 and the length scale of order 

10 km, the equivalent Ekman damping time is roughly one day. In other words, a 

strong bottom slope disperses energy at the same rate as a rather viscous bottom 

boundary layer. This suggests that bottom topography may provide an effective 

means of removing energy from the surface layer. 

In summary, similar results are obtained with baroclinic turbulence and a 

viscous bottom Ekman layer and with a bottom slope. In one case energy is 

dispersed as topographic waves, and in the other it is dissipated. A stability 

parameter was defined, A^ = F^L
y which determined the evolution. If small, 

active instability occurs and the surface vortices continually break into smaller 

ones as their lower halves are dissipated. If large, instability is hindered and 

vortex growth resumes, but the motion in the surface layer is sluggish due to the 

loss of the barotropic mode, as in the one and a half layer case. 
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Figure 4.28: The mean areas for vortices in the Ekman cases. The vortices 
are elliptical groups of grid points with qi > 10. The dashed line is from the 
barotropic study of McWilliams (1990). 
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Chapter 5 

Conclusions 

The fundamental dynamical element which underlies the results presented is that 

the mean potential vorticity gradient due to bottom topography varies vertically, 

exerting an influence on flow at depth but not directly influencing flow at the 

surface. The result is that at the surface, vorticity anomalies tend to relax to a 

state in which the streamlines and isolines of potential vorticity coincide. These 

vortices are steady state solutions of the upper layer PV equation, and so may be 

long-lived. In contrast, vortices are not a possible steady state at depth, but will 

evolve and even disperse into waves under the influence of the restoring force. 

Thus the vertical asymmetry of the mean PV gradient translates directly into a 

vertical asymmetry in the character of the flow. 

The case of barotropic, /3-plane turbulence is a good counter-example. At 

small scales, the effect of ß is weak and one finds vortices. However, as the 

inverse cascade to larger scales proceeds, the effect of ß also increases, favoring 

waves; this is the central idea of Rhines (1975). In freely evolving turbulence, 

one finds that the vortices eventually all disperse when the scales become too 

large (McWilliams, 1984). In the (/-plane) slope case, there is no PV gradient at 

the surface, regardless of the size of the motion, so vortices there do not disperse. 

It is as if there is a co-existence between ß and non-/3 turbulence.   There are 
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other examples of spatially varying PV gradients, an example being that due 

to a sheared mean flow. One similarly expects to find more vortices in regions 

where the mean gradient is weak or vanishes; indeed, it has been suggested that 

the reason the Great Red Spot on Jupiter is so long-lived is that it resides in a 

region in which the total PV gradient vanishes (see Flierl, 1987). 

The slope case is special because of the coexistence between the surface vor- 

tices and waves. Though vortices may be "favored" at the surface, they interact 

with topographic waves intensified at the bottom, and even lose energy to them. 

The present results are essentially just a characterization of this interaction, un- 

der various conditions. 

Two advective parameters found by scaling the lower layer PV equation play 

central roles in both single vortex and turbulence cases. These parameters are 

-5^2 and A = ^r^. The former parameter, which measures the importance of 

the advection of relative vorticity at depth, is more important when the motion 

is nearly barotropic (and thus stretching weak). When it is small, an initially 

barotropic vortex behaves as we expect from previous flat bottom results; the 

baroclinicity of the evolution depends only on whether the vortex is larger than 

deformation scale or not. If the parameter is large, the evolution is always baro- 

clinic as the vortex breaks into surface vortex and waves. 

In the turbulence case, the scale of motion changes and so then does j-f^- The 

cases considered in chapter 4 had initially small scale motion, so the parameter 

was initially large, but decreased in time. As in the single vortex case, the flat 

bottom thinking applies initially; however, the scale reaches a value at which 

the parameter is order one at which point the flow divides again into surface 

vortices and waves. Due to the inverse cascade then, the flow always evolves 

to a baroclinic state. This baroclinic state may appear nearly barotropic if the 

waves are much larger than deformation scale, but there is always a baroclinic 

component, and surface-trapped vortices. 
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The second parameter, A, is a measure of the importance of stretching. Thus 

it is the more important parameter when there is little relative vorticity at depth, 

such as in the case of a surface-trapped flow. In the single vortex case, the size 

of the parameter dictated whether the surface vortex was stable or not, provided 

that the vortex was not immensely larger than deformation scale. In other words, 

a large vortex is able to relax into an axisymmetric state which is steady and 

stable over a strong slope. 

In the turbulent case, the vortices are never perfectly steady due to the con- 

tinual perturbations applied by other vortices. In this case, arguably the more 

general in forced systems such as the ocean, A determines the rate at which po- 

tential energy is lost from the surface layer. As in the single vortex case, if A > 1 

then baroclinic instability is not inhibited and energy loss is as rapid as in the 

flat bottom case. If it is smaller than unity, instability is impeded and the energy 

is lost more slowly to topographic waves. The flow does not achieve barotropy 

in this case, but remains surface-intensified while radiating energy away. 

The flow separates most naturally into the surface and bottom constituents 

when viewed from the perspective of potential vorticity. After all, the asymmetric 

forcing element is a PV gradient, so it follows that the effects are most clearly seen 

in PV. Considering the layer streamfunctions or the barotropic and baroclinic 

modes obscures the picture because both the vortices and waves may have non- 

zero flow in the opposite layers. The streamfunction perspective can then lead 

to a view of the flow which is more complicated than it ought to be. 

Of course, the preceding discussion focusses on the /-plane case, in which there 

is zero background P V gradient at the surface. With the addition of the planetary 

/3-effect, that gradient is no longer zero, and one might expect certain changes. 

Likewise, one wonders what modifications are required to encompass continuous 

stratification. Therefore two short sections are presented which discuss these 

additions. 

201 



5.1     Continuous Stratification 

In two layers, the slope acts as a potential vorticity gradient which acts through- 

out the depth of the lower layer. In a continuously stratified system, the slope 

PV gradient is essentially a delta function at the bottom; on the /-plane then 

there is no gradient of PV throughout the entire water column. Therefore some 

changes may be expected. Here the properties of linear waves are compared to 

anticipate such changes. 

The quasi-geostrophic equations with continuous stratification on the /-plane 

over a linearly sloping bottom are (e.g. Pedlosky, 1987): 

dtdrf + J(ip, dzij}) = 0    at z = 0, (5.1) 

ftV3^ + W,V^) = 0, (5.2) 

dtdzi/> + J(r/>, dxi/>) + lydyh dxif> = 0    atz = -H, (5.3) 

where ylV* = (V2 + Pdz(l/N
2dz))tp is the potential vorticity in the interior, iV2 

the Brunt-Väisälä frequency and dyh is the bottom slope. 

Topographic waves (Rhines, 1970) are solutions to the linear version of these 

equations. As in the two-layer case, there are two solutions on the /-plane: a 

stationary solution and a propagating solution. The latter are bottom-trapped 

with a general solution tp a sin(kx + ly — at)cosh(m(z + H)) and dispersion 

relation: 
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N2H k d„h 
a = — 

f m tanh(m) 
(5.4) 

As stated, these waves have zero interior PV, so that V3V'™ — 0. As in the 

two-layer case, any flow with vorticity in the interior projects onto the stationary 

mode. However, as in the two layer case, the waves and interior flows may interact 

because the waves extend up into the water column and have a vertical height 

which scales with the stratification and their horizontal scale, i.e. H a ^. 

Scaling equation (5.3) with the wave period yields a single advective param- 

eter because there is only one advective term. Assuming a single velocity scale, 

horizontal scale and vertical scale, the parameter is: 

- — (5.5) 

where S is the Burger number C|^ and ß2 = ^^ is a measure of the bottom 

slope. The parameter serves the dual role of g-fj and A, as can be seen by 

rewriting ^r? —* F. Note that strong stratification or small horizontal scales 

increases the effective slope while simultaneously yielding shorter topographic 

waves which are in turn less able to deform surface flows. The reduction to a 

single linearity parameter is perhaps the most striking difference with the two 

layer model, and is related to the continuous vertical variation of the density 

and of the interior flow. The latter implies that the importance of nonlinearity 

changes smoothly from surface to bottom, so that evaluating stability requires 

knowledge of the vertical shear. More work on the stability of continuously 

stratified flow over a slope is required to understand the sensitivity to the slope 

severity. 
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Lastly, unsteady surface flow in the two-layer case always drives topographic 

waves; the same is true under continuous stratification on the /-plane. Consider 

the vertical integral of the linear interior PV equation: 

~P Lh y2^dz = dt^° - dt^-h=dt^-H ■       (5-6) 

By the linear bottom boundary condition, the last term on the right-hand side 

is proportional to cross slope motion. Thus temporal changes in interior flow are 

likely to excite topographic waves which will deplete the energy of that flow. 

Thus it appears the major characteristics of the adjustment on the /-plane 

carry over to the continuously stratified case. Vortices at the surface of the fluid 

could excite waves and thereby lose energy, but those waves could not deplete 

the vortex potential vorticity. The vertical extent of the waves also scales with 

horizontal extent, so long waves may disturb interior flows all the way to the 

surface. Likewise, unsteady motion in the interior implies wave radiation. The 

primary difference is that the slope PV gradient is now trapped to the slope, 

so that comments pertaining to surface PV anomalies now essentially apply to 

anomalies anywhere in the interior of the fluid, opening the possibility of long- 

lived, sub-surface vortex features. 

5.2    Planetary ß 

Unlike the bottom slope, the variation of the Coriolis parameter yields a PV 

gradient which acts symmetrically on both vertical layers. The waves which 

exist with both types of gradient present are described in Rhines (1970) and 

in Pedlosky (1987). For simplicity, assume the topography shallows in the y 

direction as in the latter reference.   The wave structure is found to depend on 
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stratification, scale and strength of the bottom slope. If the stratification is weak, 

the waves are essentially barotropic Rossby waves with ß replaced by the sum 

of planetary and topographic gradients, i.e. ß + ß2- If the slope is strong, a 

topographic wave much like the /-plane wave coexists with an infinite number of 

planetary waves which have a node at the bottom. Analogs of these waves are 

present in the two-layer case, presented here for comparison. 

The linear QG PV equations (equal layer depths) now are: 

S* + "l* = 0' <57> 

-ziqi + W+ ß2)7r1>2 = 0. (5.8) 
at ox 

Substituting in a wave-like solution, -0i o. etkx+tly ""', one obtains the dispersion 

relation: 

(2ß + ß2)k   J + F V7 f59) 

2/c2       K
K* + 2F

J
     2AC

2
(/C

2
 + F) K     ' 

where the radical is defined as: 

7 = (ß2{4ß + /32)(/c2 -f Ff + 4ß2F2)k2 - Aßß2k
2K2(K2 + 2F). (5.10) 

In the limit of weak stratification (F —> 0), the fast waves have the dispersion 

relation: 
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--^ (MI) 

which are barotropic Rossby waves with the combined gradients. A vortex in such 

an environment would translate under the combined influences of topography 

and ß in a manner like that suggested by Smith and O'Brien (1983), i.e. in a 

direction between northwest and the topographic northwest. Similarly, cascading 

turbulence would arrest at a wavenumber proportional to the root of the sum of 

gradients. 

In the large slope limit (ß2 > ß), there are two solutions. A "fast" bottom 

mode in Rhines's terminology with: 

^     (2ß + ß2)k (K
2
 + F ßk 

"+ *—(^T^P) + ^T^ (5-12) 

which is similar to the topographic wave phase speed in the /-plane ocean. With 

w « ß2 ~> ß, equation (5.7) reduces effectively to dtq\ = 0, so these waves again 

carry no surface PV. Of interest is the other mode: 

ßk 
a>_ = 

K2 + F 
(5.13) 

Substituting the frequency into equation (5.8), one finds: 

ißF 
-JL—^2 = 0^^2 = 0. (5.14) 
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In other words, the other mode in this case is the one and a half layer Rossby 

wave. This means that a vortex over a slope which radiates its lower portion 

away is no longer stationary, but will thereafter evolve as a one and a half layer 

vortex on the ß plane. Such a vortex, studied by McWilliams and Flierl (1979), 

translates like the barotropic ß vortex, but at a speed which is bounded by 

the baroclinic wave speeds, and slower than a barotropic vortex on the /3-plane. 

The mechanism is what allowed the modelled Agulhas Eddy in Kamenkovich 

et al. (1996) to continue to translate after passing over the ridge, except in 

cases where topographic wave radiation depleted the surface streamfunction too 

severely. Note that McWilliams and Flierl (1979) found their surface-intensified 

vortices in two layers to approach compensation: this was due presumably to a 

deep lower layer and weak deep flows so that dispersal of the deep flow occurred 

even on the planetary ß plane. A topographic slope would simply hasten the 

effect. In any event, the presence of ß in the single vortex case yields dispersal, 

albeit slow, of the surface vortex. 

The turbulent arrest would only be slightly altered under the addition of the 

planetary /3-effect. In the "weak slope" case (equivalently weak stratification), 

a barotropic arrest should occur at a scale which derives from the sum of topo- 

graphic and planetary PV gradients; if the slope is meridional, the slope either 

increases or decreases the scale, depending on which way the slope rises. The 

essential point is that a barotropic arrest is still expected. It may be that when 

the bottom is no longer meridional, the arrest may have unusual characteristics, 

because then the mean PV gradient in essence twists with depth. This would be 

an interesting subject for future study. 

If the slope is strong, the only modification is the addition of the slow baro- 

clinic Rossby wave mode at the surface. As noted in Chapter 4, this mode can 

lead to the arrest of very weak surface flows (C/i < lcm/s). But more energetic 

flows will either arrest at the deformation scale or undergo a barotropic arrest 
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over the strong slope.   In other words, the diagram in figure (4.25) would only 

change in that the baroclinic wave mode would be added on the surface plane. 

In addition, one can show that the presence of ß does not change the fact that 

unsteady surface flow generates motion at depth. So the addition of ß would also 

have little impact on the radiation of energy to topographic waves. 

Thus the addition of a planetary PV gradient is likely to alter the overall 

picture only in cases when the bottom slope is weak, and substantial vertical 

coupling occurring. The differences may be most profound when planetary and 

slope gradients are non-parallel, leading to a twisting of the mean gradient with 

depth. Over strong topography or in cases with significant layer decoupling, the 

primary change is that the stationary surface mode is no longer stationary, and 

thus surface PV anomalies will slowly disperse to one and a half layer Rossby 

waves. As such, surface vortices could translate after radiating their deep flow 

by developing /3-gyres. Cascading turbulence would change only in that weak 

surface flows could arrest to surface Rossby waves. 

5.3    Modifications and Future Work 

While there are numerous elements that could be changed or improved, I will 

point out a few in particular. First, the choice to consider freely evolving flows 

entails a choice of initial conditions. In the single vortex case, it was possible 

to consider a wide variety of initial conditions (though the barotropic and sur- 

face vortex were the primary focus). Numerical limitations resulted in a more 

restricted set of turbulent cases however; the choice of small scale surface flow 

was motivated partly by desire to clarify energy transfers and partly because the 

ocean is forced at the surface. However, the ocean is not forced at scales smaller 

than the deformation radius, but at much larger scales by the wind. In a free evo- 

lution, one expects similar results with initially large eddies or, say, an unstable 
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zonal surface current; if A is large, instability occurs and the large eddies break 

into deformation scale eddies and then cascade up to the topographic arrest scale. 

If A is small, instability is blocked, but if the surface flow is unsteady, energy 

is still lost to deep waves. In this case the scale of motion at the surface could 

feasibly exceed the deformation scale, and rather would be set by the forcing. 

If the flow is forced, then A is no longer fixed because U\ can vary. Consider a 

spin-up from rest. Then A = 0 initially, but increases as the surface spins up. If 

the primary sink of energy is a bottom Ekman layer, baroclinic instability must 

ensue to spin up the deep layer. If energy is injected slowly, it may be that a 

leakage of energy to topographic waves is sufficient to balance the input in which 

case the flow may remain in the "strong slope" regime. However, if the forcing is 

too intense, one expects A -> 1. However, even in this case the early spin-up may 

resemble the strong slope case in that grave zonal scales are excited. Work has 

been done with such systems before, but it would be useful to reconsider them 

in light of a spin-up. In addition, it will be interesting to examine the potential 

vorticity to discover whether surface vortices emerge and to determine their role. 

The present study also presumes a sloping bottom and homogeneous turbu- 

lence which fill the domain. One might imagine differences with inhomogeneous 

turbulence. With a doubly periodic domain and homogeneous turbulence, energy 

is transferred to the wave field and the latter also shifts to larger scales. The zonal 

jet-like structures found in the strong slope case are made possible by periodicity. 

If the turbulence were inhomogeneous, the waves could simply radiate away, leav- 

ing the turbulent surface flow behind and unmolested. Recall that removing the 

sponge layer with the single vortex case in which A < 1 (Chapter 3) resulted in a 

zonal elongation of the vortex and a jet at depth. Perhaps with inhomogeneous 

turbulence, the size of A would simply indicate how quickly energy was lost to 

waves. Presumedly the turbulence would evolve to a state in which energy loss 

was minimized; the results in chapter 4 suggest that state may be a collection 
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of sub-deformation scale surface vortices. But the problem is more complicated 

because inhomogeneity can hinder cascades, as noted by Rhines (1977). Further 

study is certainly warranted with such a system. 

Additional complexity is expected with varying topography. As noted above, 

the arrest might be unusual in the case when /?2 ~ ß but the slope not parallel 

to the planetary gradient. Further complications are expected when the topog- 

raphy is no longer a linear, domain-filling slope. The flow might be stabilized 

over portions of the topography and not over others, leading to "local instabil- 

ity" (Samelson and Pedlosky, 1994) and perhaps inhomogeneous turbulence. The 

observed surface variability downstream of topography in the ACC might be a 

manifestation of such an effect (Gille, 1995). In addition, there is the question of 

the development of mean flow anti-correlated with bumpy topography (Brether- 

ton and Haidvogel, 1977; Holloway, 1978). Treguier and McWilliams (1990) have 

noted that such flow has a vertical scale which depends on the size of the bump, 

and Treguier and Hua (1987) noted that the slope of the topography was impor- 

tant to the spin-up of this flow, so the present work may have relevance. 

With regard to the single vortex problem, it would beneficial to have a more 

complete linear stability theory of a surface vortex over a slope. The work would 

augment the Hart (1975) study by examining larger slopes. The present results 

suggests an interesting dependence on slope and a more subtle dependence on 

vortex size, and such a study would help quantify these aspects. Furthermore, 

one imagines that a central dependence on A might emerge as well. 

The quasigeostrophic assumption limits accessible bottom slopes, as stated in 

Chapter 2. Therefore it is reasonable to wonder what would happen over more 

realistically large slopes. For instance, the cold core ring observed by Cheney 

and Richardson (1974) moved over the steep Blake escarpment into water which 

was as deep as the left-over surface vortex. As such, the topography essentially 

introduces a change in geometry to which the vortex must adjust. How would the 
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vertical structure change under such a change? Perhaps the vortex would become 

even more surface-trapped, such as the extremely shallow anticyclone observed 

over the California shelf by Washburn et al. (1993). As stated before, the 

observations of Largier et al. (1993) suggest variability over the California shelf 

which appears to have characteristics of the offshore eddies. Further observational 

work correlating offshore flow with shelf flows is definitely of interest. 

Finally, the results of Chapter 4 and Appendix B suggest that topography 

may be an effective means of transporting energy put in by the wind on the gyre 

scale away from energetic regions to more quiescent regions. The observations of 

Hogg (1981), Smith (1983), Pickart (1995) and others suggest that topographic 

wave radiation may be driven by the unstable Gulf Stream. One wonders to 

what extent the waves carry away energy from the region, permitting dissipation 

elsewhere. 

The present work suggests an ocean with topography might behave quite 

differently from one with a flat bottom. The alteration or even suppression of 

the barotropic mode by topography is the most serious aspect. If this occurs 

over substantial portions of the ocean, it may be necessary to rethink some of 

our notions about oceanic circulation. 
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